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ABSTRACT

A new numerical method, based on the Vortex Method, for the simulation
of two-dimensional separated flows, has been developed and tested on a wide
range of cases. The fluid is incompressible and the Reynolds number is high.

A rigorous analytical basis for the representation of the Navier-Stokes equa-
tions in terms of the vorticity is used. It includes an equation for the control
of circulation around each body, which has sometimes been overlooked.

In the Vortex Method the vorticity transport equation is solved numerically
in a Lagrangian reference frame, by following elementary vortices. The
resulting method is grid-free and concentrates its points in the regions of
steep gradients; it also allows a simple and exact treatment of the far-field
conditions. It is well adapted to the modeling of transport phenomena.

The Vortex Method has been criticized for its handling of the viscous
effects. In this study most of the effort has been devoted to understanding and
controlling the parasitic numerical effects, and to reproducing the true physi-
cal effects. This was achieved by coupling an inviscid outer flow (computed
by the Vortex Method), with a viscous boundary layer flow (computed by an
Eulerian method).

Two significant advantages of this new version of the Vortex Method are
the capacity to treat bodies of arbitrary shape, and the ability to accurately
compute the pressure and shear stress at the solid boundary. These two
quantities reflect the stracture of the boundary layer.

Several versions of the method are presented and applied to various
problems, most of which had massive separation. The comparison of its
results with other results, gencrally experimental, demonstrates the reliability
and the general accuracy of the new method, with little dependence on em-
pirical parameters. Many of the complex features of the flow past a circular
cylinder, over a wide range of Reynolds numbers, are correctly reproduced.

The method appears to incorporate many of the physical mechanisms of
separated flows, and the deperdence on Reynolds number has been obtained.
Its accuracy, when experimental results are taken as a reference, is limited
mostly by difficulties in modeling turbulence, and by the two-dimensional
assumption.
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Nomenclature.

Roman symbols.

(a,b) A set of Lagrangian coordinates.

A, Area of solid region Sy,

By  Intensity of the buffer vortex sheet.

c Chord of airfou.

Cy Drag coefficient: Cgq = drag/(.5pc*Uqc?)

C; Lift coefficient.

C, Normal force coefficient.

Cm Moment coeficient: C,, = moment/(.5pcUqx?)

Cp, Pressure coeficient: Cp = (p — P00 )/(.5pUs0?)

Cpo, Cp1s Cp1c Fourier coeflicients of the pressure during the dynamic stall.
D, Parameter in merging device.

D; Distance from i*? vortex to the wall.

d /dt Eulerian time derivative (fixed point in space).

D /Dt Lagrangian time derivative (particle).

F Fluid region.

$ Imaginary complex number: i = —1

1,7 Indices of two vortices.

k Reduced frequency of the dynamic stall pitching.
l Side of the square cells used for the taylor expansions.
K,L Indices of two cells for Taylor expansions.

L Length scale associated with the solid body.

m Index of a solid.

M Number of solids.

n Coordinate normal to the wall in inner region.

n Unit vector normal to 98S.
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n Number of cells for approximating tne vortex interactions.
N; Number of grid points in a Finite Difference simulation.
N, Number of vortices.

Ny Number of points aiong the wall.

p Pressure (divided by the density).

r Vector representation of (x,y):

=)

R (large) distance from the origin in an asymptotic expansion.
Re Reynolds number. Re = |Uu|L/v
R, Distance from the creation poiuts to the wall.
8 Coordinate parallel to the wall in inner region.
As Size of intervals along the wall.
S Solid region (union of the Sy,,'s)
8S Boundary of S (union of the 35,,'s).
Sm  Interior of the m®* solid.
0S8, Boundary of S,,
t Unit vector tangent to the boundary 85
t Time.
u,v Velocity in z and y directions.
U Velocity vector:

v=(,)

v

U,(z,y) Velocity of the solid material in the m®? body at (z, ).
Umo Reference velocity of the m*® body (at z = y = 0)

U, Velocity at large distances (in general aligned with z acxis).
Vo  Tolerance in the merging device.

z,y Cocrdinates.

2 Complex representation of (z,y): : = (z + i)

Z Complex variable, used in model equations.




Greek symbols.

(4d

incidence of the airfoil.

«g, @y mean and amplitude of o during the dynamic stall.

B

7
r

T

*

s O

L

t

s

4N 9 @DE ™ T T®
3

intermittency factor for the turbulence model.
normalized core vorticity distribution.
Circulation: closed line integral of the velocity.
Circulation of i;, vortex.
thickness of the numerical viscous region.
centroid of the inner region vorticivy in the n direction.
filtered version of 6°.
Laplace’s operator: A = 8,3 + 8,2
Time step of the numerical integration.
Amount of artificial dissipation.
Function of regularization of the velocity, associated with +.

Gradient operator:
()
V=
\Jy

Coeflicient of viscosity.

Coeflicient of kinematic viscosity: v = u/p.

Density of the fluid (p is constant and omitted in general)
Vorticity.

Angular velocity of m** solid.

Stream function.

Core radius.

Viscous shear stress at the solid wall.

Subscripts and superscripts.

z

value at large distances (freestream).
complex conjugate of z.

Xi




I) INTRODUCTION.

1) Description of the prot r..

Separated flows, in which the fluid fails to smoothly follow the solid sur-
face, in contrast with attached flows, are generally more complex and more
challenging to measure or predict. It was shown by Prandtl that, for the
same conditions, the viscous equations and the inviscid equations can have
very different solutions even if viscosity is extremely weak, precisely because
the viscous flow might separate while the inviscid flow does not [1] . Flows
at high Reynolds numbers (low viscosity) are thus very sensitive and, by and
large, we only have a qualitative and sometimes simplistic knowledge of ‘their
behavior.

In most designs, separation is undesirable since it results in inefficient
operation, with high drag or loss of pressure, or even it leads to a dangerous
situation like stall. However many devices, like wings or diffusers, often
operate on the verge of separaiion. In other cases separation is present in the
design conditions, where it is undesirable but unavoidable, like on aircraft
tails or cars, or a normal feature of the flow, like on a three dimensional
wing.

A relevant example is the flow around the retreating blade of a helicopter
in translation [2], (3] . The blade experiences large and rapid chauges of
incidence and velocity, sufficient to cause stall with strong unsteady etfects.
The blade may even move with the trailing edge forward for part of the

cycle, which always causes separation. The dynamic stability of the system




strongly depends on the aerodynamic loads, especially the pitching moment,
and these exhibit very significant non-linear and hysteretic effects. Figure
1 illustrates bow much the loads can differ during dynamic stall from static
wads at the same incidence (Fig. 1 is a personal communication by W. J.
McCroskey. The data appeared in [60]). Accurately predicting dynamic stall
woulC thus be very useful, and should be possible in the near future (at least
for two-dimensional flow), thanks to improvements in numerical methods and
computers.

Experimental results demonstrate the strong sensitivity of separated flows
to details of body geometry, for instance surface roughness [4] , and of course
to the Reynolds number [1] . The best known example is the circular cylinder:
this flow still exhibits dramatic changes at Reynolds numbers of one million
(Fig. 2 and 3). Wind tunnel tests are less reliable when fine viscous effects
are involved than when the compressibility effects dominate, because the
Reynolds number depends on model size, while the Mach prumber does noy,
:td because separation is influenced by wind-tunnel turbulence. Analysis
alone has not been able to produce many results, mainly because separated
flows can rarely be treated as slightly perturbed from a known exact soiution:
they are not very accessible to small disturbance theories. Free streamline
theory made use of the observation that, in many cases, drag depends mostly
on the forebody shape (upstream of the separation point) and very little on
the part of the body which is inside the wake [5] . Pressure also appears to
be almost constant in that . ~gioi. The idea developed was to treat the wake
as a "dead-watel” region and to assume a constant pressure in that region; in
general the value of the base pressure is determined empirically. This theory
did produce some good results [6] , but a method that ignores the unsteady
character of the flow cannot be expected to be very accurate; it relies very
much on empiricism. Thus there is an existing need for the development of

nwumerical methods capable of solving either the full Navier-Stokes equations




or a high level approximation to them without relying on much empirical
input. Once these methods have reached an acceptable level of accuracy,
taey are expected to be much faster and less expensive than large scale wind
tunnel tests, and may be more accurate if they are carefully validated against
flight. tests.

Whereas accurate and practical numerical methods are available to com-
pute attached flows [7] , similar methods do nct exist for separated flows,
which are vortical. The slowly-varying, attached, irrotational flows are very
amenable to finite difference or finite element methods, and to an Eulerian
formulation. Some of these methods can also treat separated flows, but
obtaining accurate results becomes extremely costly at mcderate or high
Reynolds numbers [8] . One alternative is the Lagrangian " Vortex Method”
(9] . This method provides a description which is better adapted to high-
Reynolds number, vorticity-dominated, unsteady flows, aad should result in

a greater accuracy for a given levei of computing resources.

The first objective of this work was to study the cupabilities of the Vortex
Method, review its inherent strengths and weaknesses, especially in the con-
text of two-dimen :ional separated fiows, and remedy some of the weaknesses.
The other objective was to develop a reliable and accurate computer program,
based on the Vortex Method, for the simulation of a general class of separated
flows. This program has been validated by systematic comparison with known
results, and is beginning to be used as an active research tool to investiguie

some candidate designs, in parallel with wind tunnel tests.

The flows to be considered are viscous flows past two-dimeansional solid
bodies in a uniform stream. Only incompressible flows are considered. Ihe
incompressibility limitation is associated with the Vortex Method. The two-
dimensional restriction is not, but situut: .1ing two dimensional flows is a first

step and reflects the "state of the art”. (The extension to three dimensions




would not be straightforward, but it is certainly possible [9].) We consider
here one or more bodies a~4 they may be in non-uniform wotion. Ever if the
motion is uniform, the flow is likely to be un~teady with a possible periodic
character. Frequently separation of the houndary layer will occur as a result of
the body being bluff or at high angles of attack. Large vortical structures will
appear and form a wake having a turbulent character, ind these structures
will strongly influence the loar’s on the body. Their subsequent decay in the
wake far downsiieam is of less interest because of their small influence on the
loads. Again, typical examples are the flow past a circular cylinder, and the

static or dynamic stall of au airfoil.
2) Equatioas.

The b.havior of isotropic viscous fluids is described by the Navier-Stokes
system of partial differential equations. The independent variables are the
cartesian coordinates z and y and the time ¢. In the conventional formulation
the dependent variables are the velocity vector U = (u,v) and the pressure
p. The density p is constant since the fluid is incompressible; the symbol p
will actually be taken to represent the ratic p/p, and p will be omitted in
the writing. Similarly, the ccefficient of viscosity u is divided by p to yield
the kinematic viscosity v. The dependent variables are defined 1n the fluid
region, that is the region of the plane exterior to the solid. Since the fluid is
incompressible the problem involves only U and p, and the following system

of equations prevails:

(continuity) v.U=0 (1)

(momentum) %g— +UVU=-Vp+4 rvAU (2)

where V is the gradient operator and A is Laplace's operator.




The boundary conditions are as follows. At large distances from the body
U tends to the "freestream velocity” U,,. At the boundary with a solid the
velocity U of the fluid equals the velocity of the solid material. No boundary
conditions are needed for the pressure. Initial conditions for U at time O are
also considered given.

Instead of the conventional "(u, v, p)” formulation, the vorticity formulation
is sometimes useful. The role of vorticity in the dynamics of the problem
considered here is crucial, and a more efficient method is likely to result if
the vorticity is treated directly. It is defined by:

dv Ou
W= oo 5y (3)
In two dimensions w is a scalar quantity and is interpreted as the local angular
velocity of the fluid (multiplied by 2).

We will show that, owing to the boundary conditions imposed on U, there
is a one-to-one correspondence between an incompressible velocity fleld U and
a vorticity fleld w. This allows one to develop a solution by focusing on the
vorticity.

The vorticity obeys a well-known conservation law. Taking the curl of
Equation 2 and using Equation 1 we obtain:

Dw Sw
— =X Vw =
Dr 57 + U Vw =rvAw (4)

Equation 4 describes how vorticity is convected by the velocity fleld and
diffused by viscosity. In two dimensions there is no term corresponding to
"vortex stretching”. Thus Equation 4 is of the same type as the equation
governing dye concentration. If dye is released by the solid it stays in
streaks that trail the solid and are confined to the wake. So will voruicity.
The difference between dye and vorticity is that dye concentration does not
interact with the velocity (it is a "passive” scalar) while vorticity and velocity

are related by Eq. 3.




The incompressibility condition is now implicit and the pressure term drops
from the equations. And as a result the number of unknowns is reduced
from three to one. The main difficulty is in deriving appropriate boundary
conditions (or conditions of another type) to form a complete system with
Eq. 4. Many approaches exist in the literature and the one taken for this
study will be described in detail later.

We can now turn our attention to the principal numerical methods that
have been proposed to solve either Eqs. (1,2) or Egs. (1,3,4).

3) Related investigations.

The finite difference method is the prevailing method in Computational
Fluid Dynamics, as opposed to finite element methods, spectral methods,
vortex methods, etc, and will be reviewed first. The finite element methods
will not be described. They are quite similar to the finite difference methods
and are receiving more and more attention because they are fy:mally more
accurate. They are probably less mature and certainly less widespread, at
least in the English literature on fluid mechanics. Spectral methods can be
extremely accurate, but are still much less versatile than the other methods;
they have been used only with very simple geometries (periodic flows, or
chanrpels) and not for flows around solids. For that reason, they too will not
be described. Finally, the Vortex Method is a promisin; although not very
mature alternative to finite differences for the simulation of incompressible
vortical flows. The method will be introduced and its literature reviewed
after the finite difference methods have been considered. Then the relative
advantages of the two methods will be assessed.

a) Finite difference methods.

The finite difference method is very well known [10] . Out of the large




number of finite difference publications, we shall describe only a few out-
standing studies, whih seem to be capable of treating two-dimensional flows,
with large separation, at Reynolds numbers of at least 10%. As a rule, the
difficulty increases with the Reynolds number.

All of these studies used the Eulerian frame of reference and solved either
Egs. (1,2) or Egs. (1,3,4) by finite difference approximations on a grid
that does not evolve in time. With either formulation there is a variety of
finite difference schemes available, time advance schemes, boundary condition
procedures, and turbulence models if applicable.

In 1961 Thoman and Szewczyk treated the fiow over a circular cylinder
for Reynolds numbers ranging from ! to 3. X 10° [11]. They used two
overlapping grids: one near the surface and an outer grid, extending to only
5 diameters. Freestream conditions were imposed over most of the outer
boundary. It is difficult to estimate a priori how much this affects the solution,
compared to a situation in which the disturbances are allowed to extend much
farther than 5 diameters. Thoman and Szewczyk used an upwind differer =2
scheme to stabilize the computation. They recognize the important fact
vhat this scheme is dissipative, in the sense that its stability comes from
a numerical dissipation of the energy, not the physical dissipation. (The
elementary form of upwind differencing introduces enough diffusion to bring
the effective cell Reynolds number down to 2.) Thoman and Szewczyk carried
their computations up to the onset of the drag crisis and the average drag
they found was very accurate. They did not report results at higher Reynolds
numbers. The pressure distribution was accurate up to a Reynolds number
of 400 and quite inaccurate at 3. X 105, although fortuitously the drag did
not reflect it. The Strouhal number was tco low by about 30%. The results
were quite good, but the accuracy of the upwind scheme was a subject of
controversy.

Ten years later Jordan and Fromm treated the circular cylinder for




Reynolds numbers ranging from 100 to 1000 [12] . They used a log-polar
grid of large extent (187 diameters) and an outer edge condition cevised to
allow the solution to oscillate freely. The time history of !if*, drag, «nd
torque clearly showed tkat a limit cycle was reached. The drag and shedding
frequency were accurate but again the pressure distribution was not as satis-
factory. The authors estimated that their computations should be considered
as accurate up to Re = 400.

In 1977 Mehta computed the dynamic stall of an airfoil [8] . He used the
vorticity formulation, Egs. (1,3,4), a conformal mapping from the airfoil
to a circle, and finite difference approximations. The numerical boundary
conditions imposed at the outer edge were chosen to constraint the solution as
little as possible. A very elaborate implicit program was used, to obtain high
order accuracy and reasonable running times. Implicit time marching schemes
are more stable, numerically, than explicit ones. The flow was incompressible
and the simulation "direct” (no turbulence model) with Reynolds numbers
up to 10* considered. Good agreement with flow visualizations was obtained.
All the qualitative features of the flow were reproduced, but quantitative
comparisons were not reported.

Wu treated the flow around a circular cylinder and around a stalled zair-
foil by an original method [13] . Wu presented a very good description and
justification of his vorticity formulation in {14] . For the numerical method,
he computed the vorticity on a grid, but only the cells that contained vor-
ticity were active. This helped reduce the number of points, like in the Vortex
Method, except that here an active cell could never be passive again: the
computational domain could only grow with time. Also, while the vortical
domain is formally infinite (because of viscosity), Wu kept it finite by activat-
ing a cell only if it contained more than an arbitrary "low” level of vorticity.
The irregular domain is expected to make the vectorization of the program

difficult. The velocity at the grid points was computed by Biot-Savart in-




tegration and the vorticity equation was solved in Eulerian coordinates by an
explicit method. In a recent paper Wu and Gulcat treat separately the wake,
the irrotational region and the attached boundary layer [15] . By adopting
the simplest possible level of description for each region, they save significant
computer time. Wu obtained very accurate results for the cylinder at low
Reynolds numbers. At a Reynoids number of 4. X 10* Wu and Gulcat ob-
tain what appears to be a very good pressure distribution and a good drag
coeflicient. However they compare the experimental pressure, averaged over
a long time, with the computed instantaneous pressure at time 4.8 (based
on velocity and radius). After such a short time the flow surely has not
reached its limit cycle. Thus the agreement might be fortuitous. In general,
Wu produced some very good ideas tut did not always support them with
sufficient numerical evidence.

In 1981 Tassa and Sankar treated dynamic stall in compressible turbulent
flow [16] . They usad an implicit finite difference program and an algebraic
turbulence model. The overall quality of their results was comparable to
the quality of the results to be reported in the present work. The agree-
ment between different simulations or different experiments, for this difficult
problem, is only qualitative. Shocks were not mentioned although the Mach
nurnber was 0.6 and high incidence angles were reached. It also seems that
the downstream boundary condition used would not allow circulation to leave
the computational domain; this is a problem with any method that solves the
equations on a finite domain.

The study by Shang, in 1982, treated compressible flow around a circular
cylinder [17] . Shang plans to extend it to three dimensions. Accordingly,
he used the primitive variables (deunsity, velocity, pressure, energy) and the
compressible equivalznt of the system of equations (1,2). The computational
domain extended to 30 diameters; "non reflecting” boundary conditions were

applied at the outer edge to minimize the constraint introduced by the finite




demain. The explicit McCormack scheme was used. The program was fully
vectorized on the CRAY computer. The Mach pumber was 0.6 and the
Reynolds number 1.67 x 105, which is quite high, but no turbulence model
was implemented. This suggests that the computation was stabilized by
the numerical dissipation of the McCormack scheme, which might be much
stronger than the molecular dissipation, depending on the grid. The drag and
shedding frequency agreed very well with experiments. The average pressures
were not reported. The lift exhibited a markedly non-harmonic behavior; this
is not mentioned in textbooks, but is consistently observed in experiments
and in computations, both finite difference and vortex.

In 1982 Davis and Moore treated the incompressible flow past rectangles at
Reynolds numbers between 100 and 2800 [18] . In that range, the molecular
viscosity still has a significant effect and the flow characteristics depend on
the Reynolds number. The finite difference scheme was chosen to provide a
smooth solution with a minimum of numerical dissipation. The freestream
conditions were imposed at the outer boundary, except on the downstream
face where the numerical boundary condition was chosen to allow vortices to
cross the boundary. The grid was adapted to the rectangular shape and it
might be difficult to extend the program to other shapes. Satisfying agree-
ment with experiments was obtained, especially at low Reynolds numbers.
They estimated that the upper limit for good accuracy was about 1000.
Computations at a higher Reynolds number will require a very fine grid, or
a turbulence model, or both. A remarkable feature was that, while the flow
at Re = 250 was very regular, with the lift signal almost a pure sinusoidal
function of time, at Re = 1000 tbe shedding was much more irregular.

b) Vortex methods.

Before a discussicn of the literature is presented, the basic idea of the

Vortex Method will be introduced and its most salient features discussed.
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The Vortex Method was designed in an attempt to provide a more natural
and efficient description of the eddies and of the vorticity they carry. The
method represents the vorticity field as the sum of a large number N, of

mobile functions with small supports:

N,
W)=Y T; Alr—r]) (5)
§==1
where r; = (z;, ;) is the center and T, is the circulation of the i*» vortex,
and ~ is the function of regularization or "core shape”. ~ is smooth, has a
small support, and an integral of 1. "ypically, y is a Gaussian. This provides
a very convenient description of the vorticity. The main advantage, when
external flows are treated, is that in the large irrotational region no vortices
will be needed. This saves large amounts of memory and allows vortices to
be concentrated in the wake, where resolution is needed.

Dynamically, these blobs follow the fluid, like particles. This is a
Lagrangian description. They retain their circulation in time, so that total
vorticity is conserved; this corresponds to the inviscid fluid equations

dl’'s

—_— 6
7 =0 (6)

dr;
dt

Equations (5,6,7) give a closed problem involving only the r;'s and T,’s,

= U(l‘.‘, t) (7)

provided that U can be calculated from w. U needs to be known only at
the vortex locations and not in the irrotational region; with incompressible
fluid, this can be achieved by application of the Biot-Savart lav. On the other
hand, the main disadvantage with using the Biot-Savart law is that it makes
each vortex interact with all the other vortices at every time step, which is

very costly.

11




The advantage of a Lagrangian description for the solution of the inviscid
version of Eq. 4 is obvious: in Lagrangian coordinates w is constant in time.
The transport of any quantity is always treated better by having the quantity
travel across the domain rather than by transferring the quantity from a fixed
grid point to the neighboring points. As a result, the Vortex Method kas no
obvious numerical dispersion and possibly less numerical diffusion than an
Eulerian method (this last point will be discussed in more detail). The Vortex
Method also turns out to be much more stable than most Eulerian methods.
Large time steps can be taken as long as the accuracy is sufficient.

The efficiency of the Vortex Method, compared to a "u, v, p” formulation,
arises in particular from the exploitation of two assumptions: the fluid is
incompressible and inviscid.

The incompressibility restriction is clearly necessary to the Vortex Method
in its present form (the Biot-Savart law depends on it). With air, it means
that only flows at low Mach numbers can be treated, such as the flow around
a landing airplane, or around the retreating blade of a helicopter. Even then,
high subsonic Mach numbers can appear locally for freestream Mach numbers
as low as 0.2. So far these effects have had to be neglected. For flows of
liquids, incompressibility is obviously a good assumption.

The inviscid restriction is more controversial. The convergence of the
algorithm to the solution of the inviscid equation has been mathematically
demonstrated (in the absence of boundaries) [19] . Explicitely adding the
viscous term vAw is not convenient in a Lagrangian reference frame because
it involves derivatives with respect to the Eulerian coordinates. On the other
hand the method often reproduces viscous behavior, especially around solids,
even though it is based on the inviscid equation. For years this feature has
been used to simulate viscous flows with an "inviscid” method. This will
be made clearer by use of some theoretical arguments and some numerical

experiments described in this report.




The method has been studied and refined for decades, without becoming
operational and widely used. This is parily true because of the viscosity issue
and partly because the problems it is applied to are very difficult for any
method. We shall limit our review to papers treating flows past solids. Good
research has been done on flows without bounda.ies, but the difficulties these
simulations raise are quite different: in these cases viscosity actually »lays a

negligible role.

Bryson, in 1959, used a very simple model to represent the flow around
a circular cylinder, with one pair of symmetrically placed vortices which
moved away from the cylinder and gathered circulation with time [20] (Fig.
4a) (Bryson did not use Eqs. 6 and 7). Thus, flow separation was assumed
but viscosity was not accounted for otherwise. This rather empirical model
served well for a short time after a rapid start. It was intended for use in
a slender body analogy: the steady three dimensional flow past a slender
cone at angle of attack is analogous, cross-section by cross-section, to the
two dimensional time-developing flow past an expanding circle in translation.
The two flows have many common features, including the formation of two
symmetric vortices, followed by a loss of stability and an asymmetric state
with a side force. This side force can affect the control of airplanes with long

noses.

At the next level of complexity, a large number of vortices are used and
follow the fluid (Eqs. 6 and 7 are applied) and symmetry is not imposed
[21] , [22], [23] . New vortices are added at the separation points, which
are either obvious (a corner on the body) or known empirically (the leading
edge of -.u airfoil or an assumed separation point on its top surface, the 84°
point ca 3 circular cylinder in the subcritical range, etc ). The strength and
exact position of che new vortices are chosen in accordance with Prandtl’s

rule and a so-called "Kutta condition™. P’randtl’s rule states that the flux of
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separating vorticity is u2/2, where u is the velocity at the outer edge of the
boundary layer. The "Kutta condition” is applied even though the wall is
smooth; it states that the velocity at the wall, under the separating boundary
layer, is zerc. It would be described better as a selective application of the
no-slip condition. Thus the boundary conditions are neither truly inviscid
nor truly viscous. The distinction that is made between "under” and "over”
the boundary layer is not very clear, especially when the upstream part of
this boundary layer is not represented. This is a major source of uncertainty;
the exact points where the velocity is sampled are quite arbitrary and have
a strong influence on the results [24] . A mapping from the body shape to
a circle is used, in conjunction with image vortices, so that the tangency
condition is satisfled. This is the traditional way to treat inviscid flows. It is
not as weil adapted to viscous flows, and the method to be described in this
report actually does not use images. In addition to degrading the accuracy
(the interaction of a vortex with its image becomes very inaccurate when they
are close to the w\.l), the use of mappings and images i extremely unwieldy:
accurate conformal mappings for arbitrary shapes arc not readily available.
The viscous "no-slip” condition is satisfied oniy where the Kutta ccadition is
applied.

Some authors allow the vortices to emanate from a filxed point on an
ordered shear layer (Fig. 4b). In general this requires a redistribution of the
vortices at each step to keep the curve smooth [25] . From time to time, the
shear layer is cut on an empirical basis to allow the formation of the Karman
street [22] . Other authors do not link the vortices and let them become a
"jungle” (Fig. 4¢).

In mosi of the papers of this period, the flow is called "inviscid” and the
questio~ of how any vorticity can leave the wall is not addressed. The value
of Jefficient of viscosity is irrelevant. The method tends to overpredict

the drag and an empirical suppression of vorticity is often used to decrease
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the drag to the desired value [22] ,[26] , [27] . This suppression of vorticity,
which violates the two-dimensional vorticity conservation law, is sometimes
presented as a way to account for three-dimensional effects.

Deffenbaugh and Marshall attempted to couple the Vortex Method to a
boundary layer, using an integral method for the boundary layer [28] . They
encountered difficulties in locating the separation point , possibly because of
the inaccuracies associated witb .he release of a single vortex at separation,
and because of the questionable vaundity of Bernoulli’s equation in a vortical
flow. They used a merging device for adjacent vortices. They treated the
circular cylinder at subcritical Reynolds numbers and concluded that the
coupling algorithm still had to be refined. They also found that they had
to destroy some of the vorticity, otherwise the drag came out too large.
Deffenbaugh and Shivananda proposed a method to treat compressible flow
at low Mach numbers [26] . Apparently their first attempt was not carried
further.

A more ambitious approach was taken by Chorin [29] . A random walk
displacement is added to the motion of the vortices, This random walk
reproduces the effects of viscous diffusion statistically. This algorithm treats
the whole flow as viscous, the Reynolds number is well deflned and finite.
The no-slip boundary condition is used, vortices are present all along the
wall and the separation of the boundary layer is spontaneous (Fig. 4d). No
empirical input is needed and the method can pow solve problems on its
own, provided that the resoluticn is fine enough for the statistical argument
to hold. Unfortunately, it seems that this would require a huge number of
vortices and an extremely accurate integration of the transport term, so that
the scattering it creates does not dominate the random walk [30] , [31] ; the
random walk idea is attractive but not so practical.

Chorin trected the boundary condition at the wall in two stages, using both

sources and vortices. He applied the boundary conditions in collocation form,
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which is not optimal. The integral form is more costly, since it requires the
evaluation of logarithms (or arctangents), but it is much more accurate and
iess sensitive to the non-physical parameters, for example the core radius.
Chorin treatea the circular cylinder; his results for drag are accurate at Re
= 100, but then seem to decreace monotonically above 100, which is not
correct physically. With use of the sources Chorin did not need to employ a
conformal mapping. However both he and his student, Cheer, later returned
to the image-and-mapping method (probably so that the normal velority
would be identically zero at the wall, instead of oscillating near zero).

Chorin subsequently introduced the "Vortex Sheet Method” in order to
taie into account the widely different scales in the s and n directions ¢”
the boundary layer and to reduce the scattering in the direction normal to
the wall [32] . The region exterior to the boundary layer is treated by the
"isotropic” Vortex Blob Method with an exchange of vortex elements, sheets
becoming blehs and vice versa. The circular cylinder and a Joukovsky airfoil
were treated by Theer with this hybrid method {33] . She reports good values
for the drag of the cylinder (at subcritical Reynolds numbers), but the results
were not very detailed and the runs seemed to be very short. Chorin and
Cheer did nct use a merging device and had to stop tleir simulations after
a fairly short time to keep computer cost under control. In this case, like in
Wu and Gulcat's case, such short simulations are questionable as they clearly
do not reach a true asymptotic state. Although his work left room for many
improvements it is clear that Chorin showed the way towards a method which
is powerful and mathematical in spirit, raiher than empirical.

More recently, Lewis independently iniroduced an image-free form of the
Vortex Method which is similar to the one that will be presented here [34] .
It is not clear whether Lewis correctly applied Eq. 10.5 (see below) or zn
equivalent condition. Lewis made use of the advantage of not needing a

mapping to treat various shapes. Using a modest computer, Lewis introduced
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only a small number of vortices, at only two separation points. The poundary
layer was not treated separately. He applied Prandtl’s ruie, although ke
recognized that it is very delicate to apply. Porthouse ard Lewis subsequently
published results using a random walk model t¢ account for viscosity [35};
these results seem to conflrm that very many vortices and very short step-
would be needed for the random walk eflect to be meaningful at practical
values of the Reynolds number.

¢) Finite difference versus Vortex methods.

It appears that presently neither method ‘one can treat high Reynolds
number flows with the level of accuracy that is needed for engineering. For
example, reliable quantitative predictions have not been obtained for dynamic
stall and computing these flows is a watter of research, not of production.
In some cases, only qualitative agreement is obtained, for instance agreement
with visualizations. Ir other cases, the quantitative agreement is good but
limited to a few numbers I't'e drag or shedding frequency. One reason
is that quantitative and veritLed experimental data are often not available
for separated flows; these seem to be as hard to measure as they are to
compute. In addition, the numerical method is still two-dimensional and
the experiments, even when the geometry is two-dimensional, nften have
significant three dimensional effects. The comparison with exact colutions
would be a more rigorous test of the accuracy of the numerical results;
unfortunately, almost no exact solutions are known for separated flows.

If the Reynolds number is quite low, less than 10°%, the finite difference
methods work well, because the solution is very smooth. At the Reynolds
numbers of aeronautical interest, which are of 10% or more, the vorticnl
structures in the wake become so small that a very fine grid is needed,
which requires a very large memory and very sh~rt time steps. If the grid

is too coarse nuwmeri~1l ditfusion and dispersion can easily dominate physical
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diffusion. If this happens the simulation is not truly viscous; such a situation
is often considered acceptable far from the walls, but not close to the wall.
Reaching higher Keynolds numbers will mostly be a matter of computer
power, both in terms of memory and speed, and of turbulence modeling.

The Vortex methods suffer from their imperfect viscous modeling and a
certain lack of credibility, independent of the Reynolds number. Nearly all
the studies treated the same shapes: cylinders, ellipses, Joukovsky airfoils.
Also, too much empirical input was needed. On the other hand, the vortex
programs needed relatively little memory and some cf them ran very fast.

Improving them is more a matter of improving the algorithm.

A basic advantage of the finite differerce methods is that they rest on a
well established theory of stability and convergerce (at least for bounded
or periodic geometries; infinite domains are not treated in a fully satisfying
manner). The same cannot be said of the Vortex methods when viscosity and

boundaries are involved.

Another advantage of finite difference 1nethods over Vortex methods is that
they can be extended to compressible flows without major changes. Treating
compressible flows, with a Mach number above about 0.1, is even easier in
some cases because it makes the celerity of the signals smaller. The extension

to three dimensions is also simpler, conceptually, than for the Vortex Mecthod.

The most significant difference is that the finite difference methods include
the viscous terms, while the Vortex Method is essentiaily  .viscid. However,
the finite difference grid often is too coarse to resolve these viscous terms
except close to the wall [35] . This effectively removes the laminar viscosity,
and the epergy is controlled by some form of numerical dissipation instead.
The true advantages of the finite difference method, even over a Vortex
Method coupled to a boundary layer, are that boundary layer assumptions are

not involved (therefore no singularities are expected) and that the transition
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from a viscous treatment (fine grid, near the wall) to an effectively inviscid
treatment (coarse grid, away from the wall) is smooth.

Another issue is the modeling of the turbulent stresses in the wake.
Whereas modeling these stresses is reasonably easy in the boundary layer,
modeling them in the wake is extremely difficult. Thus, some finite difference
methods include turbulent stresses, but these are evaluated with so much un-
certainty that the benefit is not obvious in terms of accuracy. The turbulent
stresses conveniently improve the stability of the finite difference computa-
tions; this is not an issue with the Vortex Method which is very stable.

The Vortex Method has only treated bodies in a uniform freestream flow.
It is planned to extend it to bodies in a uniform shear flow, which will be
quite simple. On the other hand it would be much more difficult to treat non-
uniform incoming shear flow. In that domain the finite difference methods
are still more versatile.

The main advantages of the Vortex Method are its accuracy in treating the
convection terms, and th~ absence of a grid. Generating grids around com-
plex shapes is not easy [36, , and unless the grid is very smooth the accuracy
suffers. Furthermore, for many finite difference programs the computational
eficiency depends on mapping the physical domain tc a rectangular com-
putational domain. Thus, treating several bodies either involves the use of a
highly distorted grid, cr a rather delicate zonal approach [37] ,[38] . Taese
difficulties are totally absent in the Vortex Method, at least in its most recent
versions, which makes it especially attractive for multiple bodies.

Another advantage is that the Vortex Method effectively includes the
infinite domain whereas the finite difference methods include only a finite
domain and require artificial boundary conditions at a finite distance \-om the
body. Choosing these conditions is delicate: there is a danger of constraining
the solution in a hidden way. The Vortex methods need less empiricism in

this regard. It is also possible to add wind-tunnel wall effects to the Vortex

19



Method (this is quite simple if the flow does not separate from the tunnel
walls).

The Vortex Method previously lacked versatility: with the use of conformal
mappings it was awkward to treat shapes other than ellipses or Joukovsky
airfoils. The situation has now reversed itself since, as we shall see, recent
versions of the Vortex Method easily treat arbitrary shape: while avoiding
grid generation [34] , [39] ,[40] .

It is not easy to assess the relative computer costs for the two methods.
In the Vortex Method, N2 interactions have to b: computed at each time
step, where /V, is the number of vortices. In contrast, many finite difference
methods require only of the order of N, operations, where N, is the number
of grid points. This is true for most explicit methods and for the implicit
methods that have a suitable ordering of the grid. Since both methods,
in their widely used forms, are second order accurate, the finite difference
method seems to have the advantage. However in practical situations /V, and
Ny are limited and the relevant question is: v irich values of N, and N; would
achieve the desired level of accuracy? Then the memory requirements and
the running times could be compared.

Only experience can answer the question, but two general rules apply.
First, the Vortex Method will be more competitive if the vortical region is
small, which makes N, much smaller than N,. Typically, the Vortex Method
works well with an external flow, but not as well with an internal flow which
might be filled with vorticity, and thus make IV, and IN; about equal. Second,
the Vortex Method nearly always requires less memory, while the running
times can differ greatly in one sense or the other. Many researchers reportea
extremely short running times for Vortex computation., but their resolution
was very coarse and their accuracy questionable. Other Vortex computations
required hundreds of hours of computer time.

To allow an evaluation of the method used in this study, the run time used
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by the computations will be reported in the "Results” section.

4) Summary of the evolution of the present method.

The starting point of this study was an algorithm written by R. Rogallo
(NASA Ames C. F. D. Branch, unpublished work). It was similar to Chorin’s
1973 method [29] , but it included a merging device and made use of the
integral form of the boundary condition, which is more efficient. It also had
images. During the present study, which was also done at NASA Ames,
the algorithm underwent three mutations, resulting in the versions K PD]1,
KPD2 and KPD3.

K PD1 makes use of the new boundary condition (without sources, images
or conformal mapping), but does not employ a boundary layer. It is versatile,
robust, and accurate for flows that are not senmsitive to viscous effects, for
example the flow past a square body at Reynolds numbers between 10* and
107. K PD1 has been successfully usei for the "Vortex Flowmeter” study
with Dr. Couet [40] . This conflguration involves several interacting bluff
bodies.

K PD2? is directly based on K PD1; it treats the boundary layer, from the
attachment point to the first separation point, with an integral method and
treats the rest of the domain with the Vortex Method. This removes the
problems with premature separation experienced with K PD1. The integral
method is designed for boundary layers imbedded in an irrotational flow;
moreover, it exhibits a singularity at the separation point. This is why
it cannot be applied beyond the separation point. The boundary layer is
also considered as quasi-steady. K PD2 is suited to problems with a single
streamlined body, and can ~2pture the major viscous and turbulent effects to
which K PD1 is insensitive. It has been used mostly for airfoil flows, including

dynamic stall [39] and the tilt-rotor configuration (work to be published in
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cooperation with W. J. McCroskey).

K PD3 is quite different from K PD1 or K PD2; it is the latest versicn of
the program and possesses the most potential. It treats the viscous region
along the wall with a truly unsteady implicit finite difference bour.Jary layer
method, in a manner that is valid even inside a vortical outer flow (like the
wake of the body itself or the wake of another body). The boundary layer
solver is not classical. It allows for separation and reattachment of vorticity;
intuitive arguments are invoked to couple it as strongly as possible with the
outer solution. K PD3 has been validated on the circular cylinder at moderate
and high Reynolds numbers, using the Baldwin-Lomax algebraic turbulence
model. It can treat several bodies without special precautions, and in general
is more accurate and provides more information than K PD1 or K PD2. It is
not quite as robust in its present version; in particular it can have difficulties

near sharp edges.
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II. ANALYTICAL CONSIDERATIONS.

1) Vorticity formulation.

The incompressible Navier-Stokes equations are formulaved in terms of the
vorticity, and the resiting system of equations will be solved numerically. It
will be shuwn that the initial-value problem used for the vorticity is mathe-
matically equivalent to the u ual initial-value problem used for (u, v, p). Since
the "(u,v,7." system is well posed, the "w” system will also be well posed.
The vorticity formulation is considered to be more efficient numerically.

The first subsection will introduce the necessary definitions 2nd present the
formal proof of equivalence of the two systems. The procedure follows closely
the work of J. Wu, described in [14]. The second subsection will contain
some comments about the aspects of the procedure that do not follow the

traditional train of thought and sometimes become misunderstood.

a) Definitions and proof of equivalence.

The domain is the (z, y) plane. It contains M solid regions called Sy,; each
Sm is an open and bounded domain with a boundary 9S,,. Let 5 be the
union of the S,,'s and F be the fluid domain. Thus the plane is partitioned
into the two open domains S and F' and the boundary 8S. In general, the
solids move and therefore S and F depend on the time, ¢.

The momentum equation, Eq. 2, contains a parabolic diffusion term, v AU,
and therefore the function U is expected to be smooth. U is considered as
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being at least of class C3 in F', that is three times continuously differentiable,
at all times ¢ > 0. The pressure is at least of class C,.
The velocity of a point (z,y) belonging to the solid S,, is given by the

function U,y,: y
Un(2,9) = Umo+ O ') (®)

where U, and {1,, are known functions of time. In this study the motion
of the solid bodies will always be prescribed, but the theory would not be
different if it were known from the solution of a dymamic equation (for
example a solid with elastic restraint).

The complete system of equations governing u, v and p is the following:

(incompressibility, Eq. 1) VU=0 inF (9.1)
(momentum, Eq. 2) % =—Vp+vAU inF (9.2)
(at wall) U(z,y) = Up(z,y) on 8S,, (9.3)

(far fleld) Ur Uy for 7|l — 00 (9.4)

(initially irrotational) Att =20 VX U=0 inF (9.5)

(no initial circulation) Att=0 f Uds =0 (9.6)

where C,, is a contour that encloses S,, and 8S,,. A more accurate deflnition
of the contour within F is not necessary, because the velocity field is irrota-
tional in F' at time zero (Eq. 9.5), so that the line integrai does not depend
on the contour.

Let us turn our attention to the vorticity formulation. The vorticity w is
defined by Eq. 3. Since U i, considered as being of class Cg, w is considered
to be of class Cq in F for ¢t > 0. In the exact solution the vorticity is known
to decay expon:ntially at large distances from the body, provided that it
did initially, at time zero [14]. All the flows considered here will be started
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from rest, with zero vorticity in F'; therefore exponential decay of w can be
assumed. As a consequence, all generalized integrals involving the vorticity
over the infinite region are absclutely convergent and have the same behavior
as if the vorticity had a flnite support.

For the vorticity formulation it is convenient to formally extend the velocity
fleld to cover the whole plane; inside F’ it is the fluid velocity and inside Sy,
it is the velocity U,, of the solid material. Naturally, the same dynamical
equations do not apply in F and in S (in particular the pressure will not
be extended to S), but this does not affect the kinematics of the extended
veiocity field. The reason for extending the various fields into S is that
this will allow the use of Green’s functions without any boundary terms or
"images” for the solution of the Cauchy-Riemann equations.

Similarly, an extended vorticity fleld is defined by applying the definition,
Eq. 3, both in F and in S. Inside S the velocity (given by Eq. 8) and the
vorticity are both of Class Cyo.

We can wow introduce the system of equations that will govern the vorticity:

(vorticity conservation law, Eq. 4) %Cti =vAw i F (10.1)
(vorticity inside solid) w =2y, in Sm (10.2)
(Biot-Savart)
+o00 oo
w(z!, y)dz' dy'
z,y) = Uy + S / / ( ) , 10.3)
()( i md o J o \a—d (z— 22 +(y—¥')? (
(at wall) Un=U,n onuvS, (n : normal vector to 8S,,) (10.4)
(additional condition) f v%;—)ds —mmigt-"l (Am : area of S,,)
85
(10.5)
(initially irrctational) att=0 w=0 inF (10.6)
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(no initial circulation) att =0 / / w(z,y)dzdy =0 (10.7)

Dy
where the domain D, encloses Sy, and 8S,, like the contour Cyp, in Eq. (9.6).
The main result of this chapter is that the systems 9 and 10 are equivalent.

First let’s prove that the system 9 implies the system 10:

e Equation 10.1 has already been derived as the curl of Eq. 9.2.

¢ Equation 10.2 is obtained by taking the curl of Eq. 8.

¢ Equation 10.3 is the Green's function integral giving the solution U of
the Cauchy Riemann system formed by Eq. 9.1 and Eq. 3, subject to the
boundary conditions, Eq. 9.4.

e Equation 10.4 is a consequence of Eq. 9.3.

e To derive Eq. 10.5 we use Eq. 9.2 and the identivy:

AU=V(VU)—V X w
in addition V.U = 0 from Eq. 9.1. We then write Eq. 9.2 on 85y, and take

its dot product with the tangent unit vector .:

DU dp dw
—t=—t 4y 2
Dt ¢ ds Van (12)

Since the particles, locally, adhere to the wall their acceleration is the same
as the acceleration of the wall: DU/Dt = DU,,/Dt on 8S,,. Thus we have:

—lt=—=4rv— (13)

We then integrate Eq. 13 along the closed contour 8S,,. The acceleration
derived from Eq. 8 is integrated analytically, and the pressure term cancels.
The final result is Eq. 10.5.

e Equation 10.6 is a consequence of Eq. 3 and Eq. 9.5.
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¢ Finally, Eq. 10.7 is a consequence of Eq. 3, applied in F' and S,,, and
Eq. 9.6.

Let us now prove that the system 10, in return, implies the system 9:

e Equation 9.1 is automatically satisfied when the velocity field U is
generated by the Biot-Savart law, Eq. 10.3.

o Equation 9.4 is also automatically satisfied due to Eq. 10.3 and the fact
that w decays exponentially away from the origin.

e To prove Eq. 9.3 it is convenient to introduce a stream function. The
velocity U given by Eq. 10.3 is divergence-free and a stream function ¢ can
be associated with it and given by:

—_— —_— Y (14)

The solid body velocity fleld given by Eq. 8 is also divergence-free; a stream
function ¥, can be associated with i* and defined over S,, by the same
formula as Eq. 14. In both cases the stream function is defined except for an
arbitrary additive constant. Then Eq. 10.4 can be rewritten:

Y _ O0Ym
50 = B along 38S., (15)

Thus ¥ — ¥,, is constant along 8S,,. In addition, as a consequence of Eq. 3
and Eq. 14 the following Poisson’s equation applies:

AYy=w (18)

Now the (scalar) curl of Uy, is 2Q0,,,, and w is also equal to 21,, in S,,, from

Eq. 10.2. Therefore ¥ and ¥, satisfy the same Poisson’s equation, and:

A(Y — ¥Ym) =0 in Sp (17
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The function ¥ — v, satisfles Laplace’s equation in S,,;, which is bounded.
1t is also constant on §S,, (Eq. 15), which represents a Dirichlet boundary
condition. This is a well posed problem and the unique solution for ¥ — ,, is
a constant over S,,. Therefore its derivatives are zero, which can tz written
as:

U(z,y) = Upn(z,y) in Sp, (18)

The velocity fleld is equal to the solid body velocity inside the solid.
Furthermore since w is consider~4 to be of class C it is bounded (for t > 0)
and the velocity field U generated by Eq. 10.3 is continuous; so if it is equal
to U, inside S,, it is also equal to U,, on 85,,, (the solid body is assumed
to have a finite thickness) and Eq. 9.3 follows.

e To prove Eq. 9.2 we have to produce a pressure fleld. Let us consider

the quantity:

DU

— — vAU 19

or Y (19)
with U given by Eq. 10.3. If we take the curl of Eq. 19 we get (s'ice U is
divergence-free):

Dw

- 0

D vAw (20)

which is zero from Eq. 10.1. Therefore the quantity defined by Eq. 19 is the

gradient of a function p:

DU

We now write Eq. 21 on 85S,,, rewrite the viscous term as in Eq. 13, use the
same argument for DU/ Dt and take the dot product with the tangent unit
vector to obtain:

f QEds=2Amggﬂ+u gﬂds (22)

8s dt an
S S
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The right-hand side is zero from Eq. 10.5. This means that p is single-valued
around each solid S,,. Therefore p is the pressure (defined except for an
additive constant) and Eq. 9.2 is satisfled.

e Equation 9.5 is a consequence of Eq. 10.6 and Eq. 3.

o Finally, Eq. 9.6 is a consequence of Eq. 10.7 and Eq. 3, applied in F
and Sy,.

This completes the proof.

b) Comments.

The first comment qualifies out assertion that "the system is well-posed”.
The far fleldcondition, Eq. 9.4, is imprecise in the sense that it does not
specify how fast the difference (U — U,,) tends to zero as ||r|| tends to oc.
How strong this decay should be to provide a well-posed system with the
Navier-Stokes equations has not been rigorously established. The common
practice one follows, when confronted with this question, is to as ume a
behavior in the far fleld that is as regular as possible. If we assume that
the velocity can be expanded in negative povers of ||r|| and that the How
is effectively irrotaticnal in the far fleld (the vorticity decays exponentially)
then the terms of order ||r)| ™! are a source term and a vortex term. The
source term raust be zero for mass to be conserved. The vortex term gives
the circulation around a large contour. This circulation must be a constant,
from Kelvin's theorem (the viscous term AU has been written — 1’V X w and
therefore decays exponentially, if w does). If a steady lifting tlow is sought
the circulation will not be zero. In our case the value of the circulation
does not matter much since the flow is viscous and unsteady, and thus will
wash away any excess circulation. We shall assume zero circulation; therefore
the velocity disturbances decay like ||| =2. With this decay specified, the
Cauchy-Riemann system has a unique solution, given by £q. 10.3. Rigorously
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this should not be considered as a pure boundary condition: it would be over-
specified. It contains the boundary condition and an assumption about the
far-fleld behavior of the solution.

The initial conditions were derived in the same spirit. They simulate an
impulsive start of the flow. After such a start the vorticity will be confined
to 85 and be infinite in magnitude, with a finite jump of velocity across 8S.
This is simply a potential flow probiem and it is well known that in such a
case the circulation around each solid is arbitrary. It was set to zero.

The second comment concerns the boundary condition at the wall. If
we examine the systere 10 and especially Eq. 10.4, it seems that only the
continuity condition (zero velocity normal to 8S,,) is applied and that the
no-slip condition (zero velocity parallel to 8S,,) has been lost. However it was
shown that Eq. 9.3, which includes no-slip, was satisfled. This paradox is
clarified by noting, first, that the velocity fields produced by the formula 10.3
are not arbitrary (they ore divergence-free and have the required vorticity
20}y, in Sy,), and second, that what we have shown is that the global normal
velocity condition (Eq. 10.4 applied all along 8S,,) implies the global no-slip
conditioii. Naturally, the lccal normal velocity condition does not imply the
no-slip condition.

Except for Chorin’s first paper [29] and the recent paper by Lewis [34], all
papers employing vortices imposed the boundary condition, Eq. 9.3, in two
stages. First, they included image vortices in the Biot-Savart law, Eq. 10.3,
to secure the normal velocity condition, and then, they introduced vortices
to secure the no-slip condition. Here the complete boundary coundition is
obtained in one step by introducing vortices to satisfy Eq. 10.4, which
tecomes an integral equation for w if U is replaced by Eq. 10.3. This
is much more efficient since Eq. 19.4 and 10.3 can be written directly in
the physical plane, whereas the image vortices could only be used after a

conformal transformation had converted the body into a circle. This made
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the Vortex Method awkward and limited the simulations to the few cases for
which the mappirg and its derivatives are . nown: eilipses, Joukovsky airfoils,
etc.
The third comment is about the conserva.ion of circulation. We mentioned
previously Kelvin's theorem concerning the circulation around a large con-
tour, I'. Equation 10.5 has an interesting consequence which extends Kelvia’s

theorem. This result is due to Wu [14). T is equal to

400 400
I'= / /w(z,y)dzdy (23)

(the integral inclcdes the vorticity that is inside S). To evaluate dI'/dt it is
convenient to use Lagrangian coordinates, because in Lagrangian coordinates
F and S do not depend on ¢, so that points do not switch from F' to S as the
solids move. Let (¢,b) be Lagrangian coordinates which coincide with (z,y)
at the time considered. The Jacobian of t3» mapping (a,b) — (z,y) is 1 at

any time since the flow is incompressible. Therefore I' i5 also equal to:

+00 +o0
I'= / /w(.z,b)dadb (24)

we can integrate in either set of coordinates. Then dI'/dt is:

<400 o0

= Q-“l(a,b)dadb (25)

a
at Dt

==00 =00

This is Reynolds’ transport theorem.
We can now revert to the (z,y) coordinates to evaluate Eq. 25. In S,,
Dw/Dt is 2dQ,,/dt and integrates to 24,,df}n/dt. In F', Dw/Dt is vAw and
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is easily integrated by parts, to yield:

M
dar , Qm f Ow ] o
= 2 (Mgt f g ! (26)
Mem] 39S J

There is no contribution from the far-field, because of the exponential decay of
w. In addition, for each 7 the expression between brackets is zero, according
to £q. 10.5. The integral along 8.S,, that appears in Eqs. 10.5 ard 26 can
be interpreted as the total production of fiuid vorticity along 8.5,,. Clearly
each solid, while changing its internal circulation at the rate 2A,,d\},,/dt,
releases an opposite amount of vorticity into F'. If there is only one solid this
is equivalent to Kelvin's theorem, which states that dI'/dt is zero. If there
are several solid bodies E£q. 26 is a stronger result, since each solid separately
contributes zero to the circulation.

Amnother point of interest is the way the pressure is computed. Computing
the pressure is not necessary in order to solve the vorticity equation, but it
is an excellent way to monitor the simulation. The common w: v to interpset
boundary layer behavior is in terms of the pressure gradient along the wall.
¥Formally, the pressure is given by Eq. 21; however this equation would be
hard to use numerically with thie Vortex Method. On the other hand Eq. 13
gives the wall pressure gradient as a function of v&« /dn, and we have seen
that v8w/On is the rate of creation of vorticity at the wall; this quantity
is well defined in the Vortex Methed and will allow the wall pressure to be
computed accurately, even inside the wake. Using Bernoulli's equation in the
wake would be incorrect since tne flow there is vortical.

A detail remains: Eq. 13 only yields the pressure gradient; thus the pressure
is known except for an additive constant. If one wiskes to determine this
constant and the body is in contact with the irrotational region, it is possible
to apply Berroulli's theorem from infinity upstream to a point on the attached

part of the boundary layer. In practice it is convenient to use the front
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stagnation point.
Another useful boundary layer monitor is the wall shear stiess. It is equal
to:
T=vw  ondSp, (27)

2) Approximations for the outer and inner regions.

l.latching procedure.

a) Motivation.

This section describes the approximations that are made and how certain
considerations allow us to simplily the equations, by omitting terms that are
xnown to be small or information that is not important.

Most of this section applies to all three versions of the program; when they
differ, the description will apply only to X PD3. The theory implemented ‘n
K PD1 and K PD2 and their numerical aspects will be described in Appendix
A.

The most important, and the most delicate, approximation is naturally the
negiect of viscosity. The coefficient of viscosity is small, but it multiplies the
highest derivative, and the perturbation problem is said to be singular [42] .
The inviscid problem and the viscous problem have very different characters;
in particular they do not require the same number of boundary conditions.
Regions exist in the flow where the velocity gradients are so large that the
viscous term is as large as the inertia term. This viccous term can change the
locar value of the vorticity by an atuount of order 1, meaning that it does not
tend to zero while the coefficient of viscosity dots. Therefore the flow with
small viscosity cannot be treated as slightly different from the inviscid flow
in the usual s¢nse, and a straightforward attempt to expand the solution as

a power series in v would fail.
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The justification for omitting the viscosity is the following. The effect of
viscosity will be to diffuse the vorticity over very short distances, without
creating or destroying any. (The viscous term in Eq. 4 is the divergence
of vVw and vVw is interpreted as a flux of vorticity. It is not a source
term.) Let L be the length scale associated with the body, U, the freestream
velocity and v the kinematic viscosity. The non-dimensional number LU, /v
is the Reynolds number, and is large in all cases under consideration (over
10%). The length scale associated with the viscous diffusion is /vt where ¢
is the "age” of the vorticity. Let us consider some vorticity which is "born”
at the solid boundary and in a time L/U, is transported into the wake, to a
distance L from the solid. The viscous scale becomes \/I/_L7I_J; and the ratio
of this scale to L is \/m, or Re—'/2 and thus is small. Integrals like
the one in equation 10.3 and in general the flow close to the solid boundary
will not be sensitive to the displacement of the vorticity over such a small
distance. Since predicting the stresses on the solid is the altimate objective
of the study, omitting detailed informaticn abcut the vorticity diffusion in
the wake is minor as long as the transport is correct.

However the vorticity is "produced” at the solid boundary [43] and its
subsequent transport is very sensitive to its initial life, near the wall, during
which the scales are small and the viscous term important. it is the convection
with the fluid that carries the vorticity into the large structures of the wake,
but the velocity is zero at the wall and only the viscosity can make the
vorticity penetrate into the stream at all. Therefore the "justification” we
just reviewed breaks down in the wall region.

This motivates the procedure, illustrated in Fig. 5, of coupling an inviscid
outer flow and a viscous boundary ! yyer flow. This procedure is common when
the outer flow is not only treated as inviscid but also as irrotational. Here,
the outer flow will be vortical. The effort will be worthwhile if an efficient

salver is available for the simplified equations in each region.
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The Vortex Method is efficient in the outer flow; it treals the transport
term accurately and provides the necessary resolution in the wake. It does not
cause any problem at large distances from the body. Its weakness in treating
the detailed viscous features will not disturb the large scale structures which
dominate in the wake. The implicit finite difference method is very good
at treating thin viscous flows. For such a small and logically rectangular
domain it is also very fast. Both methods are available and well tested. The
new element that is needed is a procedure that makes the two regions interact
through the boundary conditions at the interface.

In a previous investigation Shestakov also coupled the Vortex Method to
an Eulerian method [44] ; however he used the Vortex Method in the wall
region, and the Eulerian m¢<ihod away from it! Even though the conditions
were slightly different (he treated an internal flow) our interpretation and
Shestakov's appear to be totally opposite. His results appear reasenable, but
it is not clear how much his flow depended on the wall region, or hoew much
benefit he derived from using the Vo vex Method near the wall.

The two approximate systems of equations will be described separately,
followed by a discussion of the conditions at the interface.

b) Outer flow.
In the outer region, the viscous term in Eq. 4 is dropped, only the transport

term is retained. The approximate equation is:

Dw ‘
o = 0 (28)

The material derivative of the vorticity, or equivalently its time derivative
in Lagrangian coordinates, is zero; this is what makes a Lagrangian method
attractive.

The vorticity is zero at large distances (the system is always started with

the fluid at rest) and no boundary condition is needed in the far fleld for Eq.
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28. The far field behavior of the velocity is essentially the same as in the
exact formulation, in which the vorticity decayed exponentially.

The proper boundary condition for the hyperbolic Eq. 28 at the interface
with another domain depends on the sense of the velc:city; w itself is the
characteristic variable and the velocity U gives the characteristic direction.
If this velocity is into the other domain (outflow), no condition should be
applied; if it i, into this domain, the value c¢f the vorticity, or equivalently
the flux of vorticity, should be prescribed. Informaticn travels in the same
sense as the particles, and this is realized very simply with a Lagrangian
method: an outflow boundary absorbs particles and information, an inflow

boundary generates new particles which carry information.

¢) Inner flow.

In the boundary layer the viscous terms are retained, but the thinness of the
layer renders some terms negligibi.. Curvature effects will not be included.
This is legitimate for shapes like a circular cylinder; for airfoils, it might be
necessary to account for curvature near the trailing edg , or to round it off
so as to increase its radius of curvature.

Let s and n be the coordinates along the walil and normal to it respectively,
and z and v be the velocity components in the s and n directions respectively.
The scale in the n direction being much smaller than that in the s direction
allows Egs. 1,3 and 4 to be approximated by:

Sv

Su
— 4 —=0 29
Os + on (29)
Ju

= —— 30
v on (30)

dw 82w
_— N =V——- 31
at +U.Vw V8n2 (31)

Equation 1 has simply been reformulated in terms of (s,n,u,v), without

approximation, to yield Eq. 29. The definition of the vorticity, Eq. 3, has
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been simplified by dropping the 8v/8s term, giving Eq. 30, and the viscous
term in the s direction has been dropped from Eq. 4 to give Eq. 31.

These differential equations are the same as the conventional time-
dependent boundary layer equaticas, but the boundary conditions employed
will be different. The inner region extends around the whole body, and the
boundary conditions in the s direction are periodic. The equation is advanced
in time, not by "marching” along the boundary layer in the direction of the
local velocity. Thus the type and stability of the equation are not affected
when this velocity changes sign, for instance at separation. The other major
difference is that, whereas conventional boundary layers are imbedded in an
irrotational outer flow, this one is not. In particular, there is no Bernoulli
relation linking the outer velocity to the pressure gradient. Also, the vorticity
does not necessarily tend to zero at the outer edge of the inner region, and
the boundary condition at this edge must allow a transfer of vorticity to or
from the outer flow.

The edge of the inner region ;s at n = §, where § is a parameter. §
should be small enough for the boandary layer assumptions to be valid; on
the other hand § should be large enough for the physical viscous region to
be contained in the computational region. Naturally, the "viscou: region”
cannot be precisely defined; however, if the inner solution reveals strong
gradients confined to the vicinity of the wall and a quieter region elsewhere,
d is probably large enough. Another test is tc compute the various physical
thicknesses of the boundary layer (displacement, momentum, etc ) and to
compare them to §. Along the attached region, the boundary layer is well
within §; after separation almost all the vorticity is in the outer region and
theie is no boundary layer in the usual sense. Examples will be given to
illustrate how 4§ is chosen.

In the boundary layer the velocity is obtained by integrating Eqs. 29 and
30 in the n direction. Both components of the velocity are zero at the wall.
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This provides a well posed system with Eqgs. 29 and 30 since these are first
order.

Equation 31 is of second order in the n direction and thus requires two
boundary conditions.

Instead of a boundary condition at the wall, the integral equations, Eqs.
10.3, 10.4 and Eq. 10.5, are used. This is natural since we have shown that in
the exact formulation Eqs. 10.3, 10.4 and 10.5 regulate the flux of vorticity
from the wall.

The other condition regulates the flux of vorticity through the interface.

d) Interface conditions.

Both the velocity and the vorticity field should be matched at the interface.
The matching of the velocities is done in the same spirit as in classical
boundary layer theory. The component of velocity parallel to the wall, u,
will always be matched since it is of order 1. The normal component v is
small, of order §, at n = § and at the lowest level of approximation it is
neglected; we shall adopt the next level of aporoximation and match the v
components as well(still assuming that the inner region is thin).

As for the vorticity, since Eq. 28 is first order and Eq. 31 is second order,
they cannot be matched without making an additional approximation.

The two domains :xchange vorticity throngh the interface. Since Eq. 28
is applied down to the interface, it is consistent to derive the approximate
interface condition in the same spirit. Thus it is assumed that the interface
is far enough from the wall for the viscous term to be dominated by the
convection term, and the transfer of vorticity is taken a; vw and imposed by
the upstream region. The boundary condition has thus dropped to !he level
of the inviscid approximation. For Eq. 31, this means that the viscous term
uﬂ%ﬂ}is neglected at the outer edge of the boundary layer.
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IIT) NUMERICAL IMPLEMENTATION.

Discrete approximations to the continuvous equations are derived as a basis
for the following discussion of the numerical method. The algorithm used
for each region are described first, and then the coupling procedure is intro-
duced. Each method converges in its domain as the scale of the discretization
is reduced in space and time. However, the complete algorithra should not
be expected to converge to the Navier-Stokes solution since the errors intro-
duced by the inviscid and the boundary layer approximations remain finite.
Convergence at a given Reynolds aumber could only occur if the order of the
boundary layer approximation (among other things) was increased in parallel
with the numerical reflnement.

This chapter applies to the K PD3 program; K PD1 and especially K PD2
use a different logic which will be described in Appendix A.

1) Outer flow.

a) Extent of the outer region and discretization in space.

The outer region covers the whole (z, y) plane except the solid and a narrow
band of thickness 6 around it. It extends to inflnity and no grid is involved.

The vorticity fleld is described as the sum of a large number N, of mobile
functions of small support, referred to as " vortices”. Each vortex is defined by
the position r; = (z;, y;) of its center, its circulation I'; which is the integral
of the vorticity it carries, and the shape + of the distribution of the vorticity
around the center (see Eq. 5). This distribution is in general bell-shaped; this
is the " vortex blob” method.
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An individual vortex does uot live for the full duration of the computation
New vortices are created at the interface, where they enter the outer flow.
Vortices can also be absorbed by the wzll region and thus removed from the
computation. Finally, vortices are allowed to merge when certain conditions
are fulfilled. The vortices are independent entities; they form a ”jungle”
except maybe just after separation, where the free shear layer has not yet
undergone instability and broken down into circular eddies.

In this study, the shape of the blob, v is taken to be axisymmetric, and is
the same for all vortices at all times. The whole blob moves at the velocity
of its center. Clearly, no diffusion of the blob takes place, and the straining
of the blob by the velocity gradients is also neglected. This straining is the
source of the spatial error, as analyzed in [9] and [19].

Simple cores, defined by algebraic functions, were used. Being everywhere
positive, these cores are expected to yield second order convergence in an in-
viscid problem [19]. The superiority of the more elaborate cores (which should
yield higher order convergence) has not been clearly demonstrated [45] ; there-
fore the simplest possible approach was chosen. The cores chosen also require
less computing time. The computaticn of the interactions is the most time-
consuming part of the program and it might be advantageous to have many
"inexpensive” vortices rather than a smaller number >f "sophisticated” ones.
Finally, it is very likely that the main source of error is not in the treatment
of the inviscid transport of vorticity, but in the neglect of the small scale
turbulence, and even more in the interaction with the walls. In the wall
region the solution is not smooth at the scale of the vortex core radius, and
the rate of convergence of the method becomes less relevant.

Two cores were used and are defined by

(1—z@)® . ,
Corel (r)={ Fer— ifr<o; (32.1)
0, it - >o0.

o2

Core 2 ’7(?‘) = m

(32.2)
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o is the "core radius”. These functions are plotted in Fig. 6, as weli as
the corresponding velocity and stream function distributions, with the point
vortex as a reference. In Core 1 the vorticity is continuous and the velocity
continuously differentiable, while Core 2 is infinitely differentiable. Core 1 has
a finite support and a vortex is not allowed within a distance o of the wall,
so that the vorticity is entirely outside the solid. Core 2 does not have this
property: its support is infinite (the vorticity decays like r—*) and penetrates
the solid. Although this does not appear to be very natural, the differences
in the results were negligible.

Core 1 was used in some versions of K PD1 and K PD2, in particuiar for
the case of dynamic stall (on a CDC 7600). It was then decided to switch
to Core 2 for the CRAY version of the program, because Core 1 involves an
"IF" test which inhibits the vectorization of the loop.

b) Computation of the velocity.

The velocity field must be computed in order to solve Eq. 28 for w. If we
introduce the value of w from Eq. ¥ into the Biot-Savart law, Eq. 10.3, the
velocity induced at a point r by the vortices is given by:

N,

u ré Yyi— Yy
() = 22 gente- (X)) (39)
with # defined by:
2
g-(-s-;’l)- = r4(r)and n &~ r~for rlarge. (34)

The formula is greatly simplified by the fact that the blobs are axisym-
metric. If point vortices were used n would be equal to r—2. With vortex
blobs 7 is regular near zero, and the velocity fleld is smooth.

The uniform freestream velocity also contributes to the velccity fleld, as
well as the velocity induced by the inner flow vorticity, which is not included
in the blobs. Since the inner region is a thin shear layer, even compared to the
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core diameters of the vortices, it can be represented to a good approximation
by a vortex sheet of zero thickness. The strength of the vortex sheet will
be designated by U,; it is the circulation per unit length of the sheet, and
also the jump of tangential velocity across the sheet. The sheet is made up
of segments, each segment covering the interval between two wall points (see
Fig. 7). The strength of the vortex sheet is assumed piecewise linear. The
velocity field of such a segment of vortex sheet can be expressed analytically.
In complex variables it is

it (30— z;): Uer(z — 22) — Uea(z — 21) (z - 22)}
U(z) = — 2" 2y, v

(35)
where z; and 25 are the two ends and U,; and U,, are the strength at
each end and the overbar denotes the complex conjugate. This fleld jumps
across the sheet but is smooth on each side: this is why segments are used
instead of circular vortices to represent the inner flow vorticity. The velocity
fleld however has a logarithmic singularity at the junction of two adjoining
segments unless they have the same slope. Therefore it is desirable to keep
this slope as smooth as possible.

Thus the velccity of each vortex is the sum of thc freestream velocity U,
N, terms of the type given by Eq. 35 for the N, wall intervals, and N,
terms of the type given by Eq. 33 for the N, vortex blobs. This is the
discrete analog of Eq. 10.3.

The computation of the interactions has to be performed at each time step
and this is the most time-consuming part of the program. N,(N, + Ny)
interactions have to be computed, and each of the N,N, interactions with
the wall segments involves a complex logarithm. Fortunately, the simplicity
of the data base makes vectorization easy, provided that the function n does
not involve "IF" tests or any non-simple function. Even then. it is worthwhile
to apply analytical tools to reduce this cost.

The high cost of implementing the Biot-Savart law, Eq. 33, comes from
the fact that each vortex interacts with vortices in the whole domain, with

42



distant vortices as well as with its neighbours. On the other hand, the velocity
fleld induced by a distant cluster of vortices does not depend much on its
detailed shape, and this should be taken into account by the program. The
velocity induced at a large distance R by a cluster of diameter [ has a Taylor
expansion in terms of {/R. The first terms of this expansion are a vortex
term, a dipole term, and so on.

To implement this in a controlled way, with a known and bounded error,
the clusters are first given a precise deflnition. The plane is divided into a
number n of identical square cells of side /, surrounded by an external cell
which is treated separately (Fig. 8). For the scheme to achieve its purpcse,
each cell should contain more than a few vortices; so n should be much smaller
than N,. Each time the interactions are to be computed, the vortices that
are in the same cell are linked, logically. Their distance to the center of the
cell is smaller than {/V/2.

It is convenient to use complex notation here. The function that is ex-
panded is (z, — z;)™!, where z, is complex for (z,,y,). Let z, be in the K*»
cell, with center Zx, and z; in the L*® cell (see Fig. 9). Thus (z; — z,)~ ! is
expanded in the vicinity of (Zgx — Z.)~!. The function z—! has a rapidly
converging Taylor expansion, and the error can be bounded as a function of
I/|Zk — Z| and of the number of terms that are retained. This number of
terms is chosen to make the error as uniform as possible. If the two cells
are far from each other, compared to /, only the first term of the expansion
will be kept. If they are not very far, up to four terms will be included. If
they are neighbours, the Taylor expansion does not apply; in that case, the
interactions are computed vortex by vortey. If either vortex is in the external
cell, the Taylor expansion is not used either, since the external cell is infinite
in extent and has no "center”.

In the flnal version of the program, enough terms were taken to ensure
a maximum relative error of 1% in each interaction. The actual error was
computed in a test case by also computing the velocities without using Taylor
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expansions. The maximum difference that was observed was about 0.5%% of
Uy, and tiu> "Ly" average was less than 0.195. This level of error is very
moderate, in comparison to the other possible sources of error.

With a proper choice of [ and n, computing the interactions this way
instead of applying Eqs. 33 and 35 directly can save 65% of the time on
a serial computer like the CDC 7600. Typical values are N, = 1000, n =
100, ! = .5 with a oody of size 2. Vectorizing the Taylor expansion for the
CRAY was possible, but resulted in a program that was more complex and
less "smooth” logically, with shorter loops. As a result, K PD1 and K PD2
run faster without the Taylor expansions; K PD3 still runs faster with them,
because using them saves the time of evaluation of most of the complex
logarithms in Eq. 35.

¢) Time integration.

The system of ordinary differential equations, Eqs. 7 and 24, is integrated
by the Adams-Bashforth second order method. The velocity of each vortex
is computed at uniform time intervals and the positions updated according
to the formula:

rlt+ A = r{t) + ALGUL) — SULE — A1) (36)

At is the time step and 1 .2 accuracy in terms of At is of second order [46] .

As with any multistep method, the first step of integration must be treated
differently because U;(t — At) is not available. Thus the first step in the life
of each vortex is handled by the explicit Euler scheme:

r(t + At) =r(t) + AtU,(¢) (37)

The Adams-Bashforth scheme was chosen because it is second order accurate,
while requiring only one evaluation f the derivative per step. It is weakly
unstable when applied to linear equations, but the non-linearity of equations
T and 24 actually stabilizes the integration and no stability problem has been



encountered (see subsection e)). The need to store two levels of the velocity
values is not a problem since the Vortex Method involves only a very moderate
number of variables.

It should be noted, however, that since the inner region solution is only
first order accurate in time, the overall accuracy is of first order at best.
The Adams-Bashforth schemr is used mainly to gain quantitative accuracy
(over the first order Euler scheme) and especially reduce the scattering of the
vortices (see subsection e) ).

d) Vortex merging device.

The boundary layer releases a signiicant number of vortices near the wall
at each time step: typically 100 new vortices, compared to a total number of
1000. (N=ztiraliy, these 1U0 vortices do not carry 10% of the vorticity; they
are numerous but weak. Typically, in one time step the new vortices of one
sign might add up to a circulation of 0.03, while each one of main "K2rman
Street” eddies carries a circulation of the order of 10). This continuous
addition of new variables should be balanced by the suppression of some of the
old variables at approximately the same rate; this is done by merging pairs
of vortices into one when appropriate condicions are fulfilled. As a result,
the vortices are dense near the body, where fine resolution is desirable, and
become progressively sparser away from it.

Deflenbaugh and Marshall introduced a merging method t 1t did not make
all the details availablc [28]. R. Rogallo (personal commmunication) used a
device which was very similar in spirit to the one used here, however the
error estimate was different.

If nothing was done to keep the number of vortices under control the
program would only be able to compute flows of relatively short duration
before the number of voriices and the associated computing cost would be-
come excessive. This would be acceptable for some applications (slender body
"2D-3D" analogy, for instance) but not for the ones considered in this study.
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Furthermore, if all the vortices are kept, there is a strong inceutive to
create fewer at each step; as a result the wall boundary condition is more
loosely satistled: typically only 20 discrete equations are retained [29]. It
is preferable to have a muck greater resolution near the body, typically 200
discrete cquations, and then let these many small vortices progressively merge
into larger ones. Furthermore the description of the flow is more homogeneous
in time and an actually reach an asymptotic state.

The procedure is the following. Only the merging of two vortices iato vne
is attempted, at each time step. If we consider two vortices of circulation T';
and I'; and positior z, and z,, the velocity field they create before mergiug
is, in complex notation:

H T T
Ule) = (=== + =2 (38)
T(z—2) (z—2)
The field they create after merging is:
§ r
U(z) = py (39)
(z—2)

where I" and Z are the circulation and position,recpectively, of the new vortex.
The first few terms of the expansion of the difference U(z) — U'(2) at large
distance 2 are (the complex conjugate of):

J ((P — I —Ty) 3 (Ty2y+Ta29—=T2) +

(P22 —Ty22 — a3
o 2 22

zs
+0(21™) (40)
The two leading terms cau be removed by taking:

_ Ty 4Tz

z r

(41.2)
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This meaus that the new vortex is given the sum of the circulations of the
old ones and placed at their centroid (Fig. 10). It is worth noting that
two vortices, if they are isolated, orbit precisely around this centroid, which
is itself stationary. Thus by merging we replace two vortices, which would
move on two concentric circles, by one stationary vortex at the certer of
these circles. This way of merging also preserves the total circulation, and
the first moment of vorticity, which is equal to the impulse of the flow (this
results from an integration by parts [14]). It should also be noted that if the
two vortices have opposite signs the centroid is aligned with them but not
between them (Fig. 10.b).

The third term cannot be removad within this framework, and is therefore
taken as an estimate of the error introduced by the merging. At each step the
vortices are examined pair by pair and the merging done only if the estimate
is within a tolerance V. The exact estimate used is:

|T'1Ta) |21 — 2o)?
[Ty 4+ T2 (Do + d1)-3(Dog + d2)1-3

where d; and dy are the distances from z; and z; to the nearest wall and Dy

<V (42)

is a parameter. The expression in Eq. 42 has the dimension of a velocity
and is our estimate of the disturbance that a merging would impose on the
boundary layer. Typically, V; is of the order 10741, or less.

The disturbance estimate is the product of two factors. The first factor
depends only on the circulations:

|['1T 2]
IT'y 4 Tg|

Clearly, merging of vortices with large circulations is discouraged, as is the

(43)

merging of two vortices that have nearly opposite circulations. (In that case
the new vortex would be very far from the original ones. See Fig. 10b)
The second factor depends only on the positions:

|21 — 292

(Do 4 d1)13(Dg + dg)!3 (44)
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Clearly vortices are more likely to merge if they are close to each other and
far from the body. The parameter D controls the relative variation of the
estimate as a function of d; and ds. If Dy is large (Do -+ d) has a slow relative
variation near the wall and the density of vortices will be quite uniform. If Dg
is s~ (Dg + d) gets very small near the wall, which discourages merging
and will result in more small vortices subsisting near the wall. Thus, the
parameter Dy ailows the user to shift the resolution from the wall region to
the wake or vice versa, as illustrated in Fig. 11.

The value of the tolerance Vj is not held constant for every time step.
Instead, the programs slowly adjusts it to keep the number of vortices near
the chosen number, raising Vy to make mergings easier if it sees too many
vortices and lowering V|, if it sees too few. The number of vortices thus
remains close to the input value, which is very desirable from a practical
point of view.

In contrast with some earlier approaches [22], this method of merging vor-
tices is totally automatic and has a mathematical rather than a physical basis.
For instance no effort is made to "manually” obtain a well defined Karman
street; the vortices will probably take on this pattern at some distance from
the body, but it will be destroyed as they move farther downstream.

e) Numerical diffusion.

The Vortex Method, at least in an unbounded fluid, has been shown to
converge to the solution of the Euler (inviscid) equations. In reference [45] ,
(written with Dr. Y. Nakamura and Dr. A. Leonard) we applied the Vortex
Method to several simple problems and by comparison with the known exact
solutions confirmed the mathematical estimates: second order convergence,
in terms of the core radius, was observed. These flows were all inviscid and
unbounded, and the initial data had to be sufficiently smooth. Gaussian cores
were used, but any core for which ~y is smooth and everywhere positive should
also give second order convergence [19].

Although the Vortex Method solves the inviscid equations, there is evidence
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of a significant "numerical”, or "parasitic”, diffusion in the solutions it
produces. Essentially, strong veloeity gradients induce strong accelerations
which deteriorate the accuracy of integration of the motion of the vortices.
This effect is different from the numerical diffusion present in many finite-
difference methods, in that it is caused by velocity gradients instead of the
velocity itself. Naturally this diffusion tends to zero as more vortices are used
and shorter time steps taken, but it cannot be ignored when doing computa-
tions with a practical level of resolution. To describe this numerical diffusion
better we shall consider some of the iuvariants of the system. In this section
only unbounded flows will be considered; the presence of a solid and the
creation of vorticity at its surface would only complicate the discussion.

It is well known that a system of point vortices is a Hamiltonian system

[47] . The Hamiltonian of the system is the Kirchhoff function, defined by

| Y
W= ;,_‘, = log(lri — 15]) (45)
J

and the equations of motion become

dz; ow

j— == — —— 6.1
I 8yi (46.1)

dy; ow

Naturally W itself is an invariant. Other invariants are the total circulation,
the first moment of the vorticity (equivalent to the momentum of the fluid)
and the second moment (equivalent to the angular momentuia) [14], [48]. W
is also the energy of interaction of the vortices (their internal energy is infinite
and has been separated from the interaction energy). These quantities are
also invariants of the exact inviscid solution; these built-in invariants provide
a basic advantage in using the Vortex Method.

For a system of vortex blobs a Kirchhoff function can still be defined, hy
replacing the logarithm in Eq. 45 by an appropriate regular function. For
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example Core 2 results in the Kirchhoff function

Il
W = ; 27: log( \/|r.~ —rj|2402) (47)
i#]

and Eq. 46 is satisfied.

If we give all the vortices tbe same core shape, the vortex blob system has
the same 4 invariants as the point vortex system (this is the "semi-discrete”
system: discretized in space but continuous in time).

On the other hand it is clear that errors in the integration of the ordinary
differential equations, Eq. 7, tend to scatter the vortices and therefore act in
the same sense as a diffusion term. One way to describe this diffusion more
precisely is tc determine which of the invariants we mentioned are actually
conserved and which ones are not in the solution of the fully discrete system
(discretized both in space and time). Any deviation will be a result of the
time integration errors.

The total circulation is obviously conserved because each value I'; is kept
constant. The first moment of vorticity, [ f wr, is conserved too if the time
integration scheme is linear (which is the case for all the classical schemes)
because it is a linear combination of the r;’s.

The second moment of vorticity, [ [ wr2, is not conserved in general. It
reflects the scattering of the vortices. In Ref. [45] we defined an effective
viscosity v, by:

400 +o0 +oo +o0o
-;—t f f w(z,y)z® + y*)dzdy | = 4v. / / w(z, y)dzdy
—_—00 =00 —_—) =00

(48)
It is shown in Reference [48] that an exact viscous snlution satisfies Eq. 48
with v, replaced by v; this motivates the definition of v,. The viscous
diffusion steadily increases the second moment of vorticity, which is a measure
of the spreading of the vorticity. The effective viscr.sity was calculated in
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several cases and shown to tend to zero with the size of time step, for a
given space discretization. This why we called the Vortex Method "semi-
inviscid”, meaning that the space discretization itself was not responsible for
the diffusion, but that it allowed the time integration scheme to introduce a
diffusive error (the same terminology is used when a method is said to " semi-
conserve” energy, i.e. it would conserve energy if the time integration were
exact).

The concept of effective viscosity according to Eq. 48 however has several
weaknesses. It breaks down if the total circulation is zero, which is often
the case, and if there are solid walls boundary terms appear which cannot
be defined very reliably in a vortex simulation. More importantly, it is a
global quantity. A concept that would yield a local effective viscosity would
be much more useful, but has not been found yet. Thus it is not possible
to produce the "modified equation” the way it is commonly done with finite
difference methods, or to produce an "effective Reynolds number” of the
computation. If that were possible, one could think of using the integration
errors to ‘ntroduce the desired diffusion.

The reason why the second moment is not conserved is that it is not a
linear combination of the r;’s; similarly, W is non-linear and will not be
conserved. Delcourt and Brown used W (interpreted as the energy) for their
deflnition of an effective viscosity [31]. The effective viscosity turned out to
be positive, since the energy decayed steadily. For the time integration they
used the Euler explicit and the Huen scheme (also called Runge-Kutta, first
and second order).

We showed in Ref. [40] that the non-linearity of Eqs. 7 and 3s has a strong
influence, even in a very simple case: two vortices isolated .n space. If their
circulations are I'; and I'y, their (complex) positions are given Z;, and Z,, and
they are treated as point vortices, then their spatial separation Z = (Z, — Z,)
satisfles the first order ordinary differential equation:

dZ _ i(Ty +T3)

49
dt onZ (49)
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If Zy is the initial separation, at t = 0, the solution is:
Z(t) = Z, e*tot (50)

where (3 is defined by Q¢ = (I'; + T'2)/(271Z]%). The vortices orbit
together, and the second moment of vorticity is constant; in that sense the
discretization by vortices did not introduce any diffusion. The linear ordinary

differential equation:
az

= 1102 (51)
has the same solution and is more familiar. In finite difference methods,
convection terms generally produce pure imaginary eigenvalues, which makes
Eq. 51 a good model probiem.

Although the two equations have the same exact solution their numerical
integration, by the same scheme, can give widely different results in terms
of stability. We shall concentrate on the modulus of Z since we are mostly
interested in scattering. Fig. 12 shcws |Z]| as a runction of time as found
in a numerical solutions to Eqs. 49 and 51 for a typical case: Adams-
Bashforth 2 and Lomax schemes, and several values of the time step. The
Lomax scheine is especially adapted to the integration of Eq. 51 [46] . With
Adams-Bashforth-2 the nonlinearity of Eq. 49 reduces the error, compared to
the linear equation, because as |Z| iLcreases the angular velocity decreases,
and the integration becomes more accurate. The solution to Eq. 51 grows
exponentially, which is a strong instability, while the solution to Eq. 49 only
grows like t/3, The integration of the linear equation by the Lomax scheme
shows exponential decay, while the integration of the non-linear equation
keeps |Z| flnite. In this case the second moment increases and decreases
periodically; the effective viscosity is not constant, and even takes on negative
values. It appears that the angular velocity cannot remain below a given value
(about 0.24/At with the Lomax scheme).

Similarly, in practical cases with many vortices the time integration scheme
does not allow values of angular velocities above a certain level, and scatters
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the vortices when the local velocity gradients are too stiong (in that sense
the Vortex Method is stabilized by its own integration errors).

In the computations done in this study, a typical value of the angular
velocity in the near wake is 10, and the time step is 0.03 (in compatible
units). The product is non-dimensional and of the order of 0.3: obviously
integration errors will be significar* at the scale of the individual vortices.
Considering the fact that at high Reynolds numbers the angular velocities in
the exact solution would be as high as several hundred units, at least an order
of magnitude greater, it is also clear that resolving all scales is not possible.
The Vortex Method performs well in spite cf such errors partly because the
conservation of circulation and momentum are built-in.

The effect of merging can be examined in the same spirit. When two
vortices of the same sign (the more likely case) merge the second moment of
the vorticity distribution decreases. The merging concentrates vorticity and
this is especially apparent in the far wake. If the mergings occur far enough
from the solid body the effect of this "reverse diffusion” is small.

2) Inner flow.

The boundary layer equations, Egs. 29, 30 and 31, are solved using a
finite difference discretization in space and an implicit method in time. The
accuracy is of second order in one space direction, fourth order in the other,
and first order in time. The Baldwin-Lomax algebraic turbulence model is
used.

a) Extent of region and discretization in space.

The region is a band of width ¢ placed around the body. § is small, com-
pared to the radius of curvature, and the curvature of the band is neglected.

The functions w, u and v are assigned values at the nodes of a grid. The
grid is stretched in the s direction, according to the distribution of the points
along the wall. In the n direction an exponential stresching is used to give
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a finer resolution near the wall. This is especially useful for turbi.ient cases,
in which the viscous sublayer is very thin. With the grids used the cell cize
near the wall was of the order of 5, in "wall units”, so that the first point
was well within the viscous sublayer [50]. The equations are transformed to a
computational plane where the grid is uniform. Centered differences are used
for all derivatives in all directions. Second order accurate differences are used
in the n direction, in which the grid can be made very fine without penalty.
In the s direction, the grid repoduces the intervals involved in the outer flow,
and these cannot be made very short. For this reason, and to make the
convection of vorticity as accurate as possible, fourth order accurate Pade
differences are used in the s direction. INaturally, to actually obtain fourth
order accuracy the grid should be smooth enough, which is not always e. y
when generating complex shapes.

b) Computation of the velocity fleld.

The u velocity in the grid is obtained by integrating Eq. 30 upwards from
the wall, where u = 0. Tke v velocity is then obtained by integrating Eq. 29
with v = 0 at the wall. In both cases, the second order accurate "trapezoidal
rule” is used in the n direction, and du/8s is obtained by Pade differences.

¢) Time integration scheme.

The integration in time is done using a first order accurate implicit scheme:
it is the Luler implicit scheme, except that the velocity components are
"frozen” at the old time level. Completely linearizing the non-linear convec-
tion term, U.Vw, would make the matrix inversion much more costly without
formally improving the accuracy. Furthermore the Euler implicit scheme is
very stable according to a "frozen velocity” analysis, and there is no evidence
that the incomplete linearization hurts its stability.

This first order scheme is used because the time variations in the boundary
layer are very slow (typically 300 steps per period) and because implementing
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a higher order scheme would be much more complex, again becanse of the
dificulty in linearizing the velocity compcnents.

The boundary condition in the s direction is periodic and does not require
special attention. The boundary conditions in the n direction are implicit,
which is desirable in the presence of a viscous term and with a fine grid.

d) Approximate factorization.

The time evolution equation is written in "delta” form and the implicit
operator is approximately factored into two tridiagonal operators, one in each
direction. This simplifies the solution without degrading either the first order
accuracy in time, or the accuracy of the steady state.

The operator in the s direction is periodic and tridiagonal. It is solved
by the Thomas Algorithm, adapted to periodic matrices. The operator in
the n direction has the three diagonals plus a full first line representing
the integral across the layer. This integral condition replaces the boundary
condition at the wall; more details will be given in the chapter on the coupling.
The boundary condition at § will also be described later; it is included by
modifying the last line of the matrix. This matrix is solved by the Thomas
Algorithm, this time adapted to start the elimination from the bottom and
eliminate the first line too.

e) Artificial dissipation.

Finally, an artificial dissipation is added in the s direction. The centered
differences used to approximate the first derivatives in the s direction do
not couple the even and odd lines, and a small positive term representing a
derivative of even order is added to the time derivative to absorb energy and
avoid the appearance of oscillations. A fourth order derivative is generally
used, to disturb the slow varying components as little as possible. Depending
on the amount added, it might be necessary to treat the artificial dissipation
implicitely to preserve stability.
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Probably because of the constraints imposed by the outer flow, and of the
non-linearity, a catastrophic instability does not result if the dissipation is
omitted in this program: the solution remains bounded. However it exhibits
short wave undulations in the s direction, which have half-periods close
to the grid size, and are very probably caused by the inaccuracies of the
finite difference method when treating the convection term with n« +-constant
velocity. Naturally the coefficient of artificial dissipation, ¢, is given a value
as low as possible. This will be illustrated in the "Results” chapter.

As a whole the numerical method used for the inner flow closely follows the
theories developed by Ecam, Warming, Steger and Pulliam at NASA Ames
[49] .

f) Turbulence model.

The Baldwin-Lomax turbulence model was chosen because it is simple to
use and was designed for separating flows [50] . It is based on the Cebeci-
Smith model, but modified to ensure a normal behavior even when the
boundary layer thicknesses become very large. It is an algebraic, or "zero-
equation”, model; it does not require the solution of any additional differential
equations, or any special conditions at the outer edge of the inner region.

The turbulent stresses predicted by the Baldwin-Lomax model are multi-
plied by an intermittency factor § which is a function of s only, and switches
from O to 1 as the boundary layer undergoes transition. The transition
model proposed by Baldwin and Lomax is not used; it does not seem to
take sufficiently into account the pressure gradients which are very strong in
flows around cylinders for instance. The criterion described by Schlichting,
which is based on his own stability theory and an empirical correlation by
Granville, incorporates the dependcnce on the pressure gradient and is used
instead [51} . This transition model produces a position s, of instability of
the laminar boundary layer, and a position s; of full transition. This delay
is used in the program to make the transition smoother: the intermittency
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factor A(s) is defined by:

B(s) =0 if s < s, (52.1)
5— 5\ s—s8\°
B(s) = 3( ') - 2( ') if 5; < 8 < 8y (52.2)
S8t — 8 St — 3
B(s)=1 if s > sy (52.3)

The choice of a cubic function for Eq. 52.2 was arbitrary; it was chosen
merely to make 5 a smooth function of s.

The turbulence model is present in the 2'gorithm regardless of the Reynolds
number. However, for Reynolds numbers of 105 or less, transition is not
predicted (although instability often is) and the turbulent stresses are never
activated. Thus the computation is fully laminar in such cases.

3) Coupling.

The interaction of the two regions involves the matching of the velocity
flelds and the transfer of vorticity acrc , the interface.

The velocii.cs are matched by properly setting up the vortex sheet that
represents the inner flow vorticity in the Biot-Savart integral. The outer
velocity fleld is a function of the r;’s and I';’s, the values of U, and the position
of the vortex sheet. If it satisfles Eq. 10.4 then the velocity at the wall (under
the sheet) will be zero, and the tangential velocity over the vortex sheet will
be U,. Thus U, is the value of the tangential outer velocity at n = 4.

On the other hand the tangential component of the inner velocity at n = §

is:
s

u(s,0) = — / w(s,n)dn (53)
ne=(
in view of Eq. 30. For the tangential velocities to match, this integral must
be equal to U,.
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Matching the normal velocities is not as crucial, because the normal velocity
is still small at §. The program rus quite well without any effort to mztch
the normal velocities. However some finer effects can be added by doing so.
Since the vortex sheets is a simplified representation of a layer of vorticity of
finite thickness §, the vertical position of the vortex sheet is arbitrary within
the thickme . §; it is natural to place it at the centroid of the inner flow
vorticity, defined by:

f:-o nw(s,n)dn

6°(s) =
(s) f:aO w(s,n)dn

(54)

Fig. 13 shows that if the vortex sheet is placed at 6° the normal velocity at
a distance § from the wall must be

d .
-E(Ue(d —35)) (55)

for mass to be conserved.
Now from Eq. 29, the normal component of the inner velocity, at n = §,
is:

6
du ;
U(S, 6) = — -a—s-dn (56)
na=(
Using integration by parts we obtain:
. 8
v(8,0) = ~|’n2‘3—] _5 nw(s, n)dn (57)
Gsj, Os .
ne=

This equation, combined with Egs. 53, 54, and 55, aud the fact that 86 /8s =
0 shows that the normal velocities at § indeed match.

The vortex sheet is placed at §° because &* is the centroid of the vorticity.
However integration by parts shows that, if the boundary layer is entirely
contained in the band of thickness §, §° is the classical displacement thick-
ness defined in boundary layer theory {51] . The line defined by 6° acts as an
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eflective boundary for the outer flow; its slope introduces the small amount
of normal velocity due to the thickening of the boundary layer. This yields a
boundary layer procedure of higher order and the incorporatiou of the dis-
placement effect is necessary Lo ovoid the singularity that otherwise appears
in the boundary layer solutions near separation or reattachment [52] , (53],
[541 The boundary layer acts on the pressure both by the emission of vor-
ticity into the outer region and by the displacement effect inherent in °; the
outer region vorticity controls the broad features of the pressure distribution
while the §* effect corrects the pressure locally, especially near separation.

Although many questions are still open the consensus seems to be that a
truly unsteady boundary layer, even in a direct solution (U, imposed), does
not have a singularity at separation [52] , [53] , (54] , [55] , [56] . However, if
the solution as time progresses tends to a steady state, the shear stress dis-
tribution will steepen and tend to a singular dist~Lution unless the boundary
layer is allowed to relieve the pressure gradient by the dispiacement effect.
. his is what is sought in this algorithm; fairly smooth soluticns are obtained
but some oscillations near separation suggest that the problem might not be
entirely solved. Naturally, the production of fair numerical solutions is not
a proof of the regularity of the differential system unless a thorough conver-
gence study is made like in reference [54] . This was not possible here, mostly
becanse of the high cost of the vortex part of the computation.

In some plots of the computated results (especially in Figure 36), the vortex
sheet is shown as a solid line over the wall and it is apparent how it lies
very close to the wall in the part of the beuncary layer having a favorable
pressure gradient, then leaves the vicinity of the wall, until the boundary
layer separates and injects itself into the outer region, becoming a free shear
layer made of vortices.

One problem persists regarding the positioning of the vortex sheet at §°. It
is that 5° can take on negative values, or values larger than §, and in general
is not very smooth in the regions where U, is small. Values of §° larger than
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5 are not acceptable, because then some vortices would be under the vortex
sheet and their tangentia: velocity would not be correct. In addition, we have
seen that the vortex sheet shoutd be kept very smooth. For these reasons,
the function 4" is filtered and truncated between 0 and &, giving 4, and the
sheet is placed at a Jistance & uver the wall, instead of 6”.

The thickness " is obtained from the inner flow solution. The determina-
tion of the quantity U, is more complex and coupled to the transfer of vor-
ticity. The whole procedure will now be described; it reflects the flux of
information from one module to the other a-.d was devised on an intuitive
basis. The flow chart in Fig. i4 illustrates it.

A buffer is used that communicates alternatively with the outer flow and
with the inner flow. It is a vortex sheet of intensity By. Starting from the
outer flow, at each time step the vortices that crossed the interface are put
into the buffer and considered as candidates for absorbtion by the inner fiow.
The buffer then communicates with the inner flow.

The circulation per unit length, under the old vortices, will be (U, -+ By).
Equations 10.3, 10.4 and 10.5 are then solved. In one time step the vorticity
that is generated "at the wall will not reach the outer flow in significant
amounts (the vorticity diffuses to distances of order Vv At and VU AL will be
.002 or 'ess while § will be .015 or more). Therefore Eq. 10.3/10.4/10.5 can be
so:ved to a very good approximation by considering the outer flow vorticity
as known and the strength (U, 4+ By) of the inner shear layer as unknown.
This amounts to assuming that for one time step the flux of vorticity through
the wall, which is also the pressure gradient, does not depend on the shift of
inner .egion vorticity in the n direction.

In that sense the boundary layer solution is "direct” at each step and the
coupling is not "strong” in the semse of [53]; the pressure distribution is
imposed on the boundary layer for this step, and will respond to the boundary
layer only for the next time step. This should be sufficient since the variations
in the boundary layer are very slow.
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(U, + By) is computed by solving a linear system. If NN, is the number
of wall intervals, the N,, unknowns are the values of (U, 4 By) over each
w: 1l interval. The first N, — 1 equations govern the differences between the
va'ues of the stream function at the NV, wall points (this is the integral form
of Eq. 10.4, which is considered less sensitive and therefore more efficient
than the colocation form), and the last equation governs the total circulation
e1 itted by the solid (Eq. 10.5). The stream function is tke sum of the
st1eam function generated by the freestream and the existing vortices (which
is tnown and foims the right hand side), and of the stream function generated
by the vortex sheets (which is the unknown). The matrix is computed at the
bezinning of the run and "Gauss eliminated” omce and for all, since it does
not change. Note that a rotation of the solid does not affect the matrix; but
if several solids were to move independently, this would affect the distance
be ween wall points, and a different matrix would have to be inverted at each
tirie step. The cost would then be higher.

The linear equations are set up to strongly couple each unknown with the
eq1ation of the same index, so that the matrix has its larger elements near
th: diagonal. As a result, the matrix is well conditioned enough for Gaussian
elimination with partial pivoting or even without pivoting (both on the CDC
7630 and the CRAY).

T'hen the inner flow is advanced. In particular, the transfer of vorticity
th'wugh the interface is computed. This vorticity is transferred petween U,
and By, but (U, + By) takes the value that was just computed. Two cases are
possible: v, < 0, and v, > 0. v, is the normal velocity at § and is obtained
frcm the inner solution (Eq. 56). As was done for the inner flow solution, the
ve.ocity v, lags by one time step.

T v, < 0 the transfer is imposed by the outer regicn, in keeping with Eq.
30 The buffer vorticity is injected into the boundary layer; after the transfer
th: buffer is empty and all the vorticity is in U,. This injection of the buffer
co1stitutes the boundary condition at n = § for the inner flow.
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If v, > O the transfer is imposed by the inner flow. The inner flow rejccts
the buffer and injects additional vorticity into it. The flux is vew,, Where w;
is the value of the vorticity at n = §. This iu itself constitutes the boundary
condition at §, since it amounts to setting the viscous flux to zero (it can also
be interpreted as a linear extrapolation).

In both cases, the sum of By and of the integral in Eq. 53 is equal to the
value that was computed for (U, + By). This yields the integral coadition
for the inner flow vorticity.

The new values of U, and By have now been determined and the program
returns to the outer region. The U, vorticity stays in the boundary layer and
U, gives the strength of the vortex sheet. The buffer vorticity is injected into
the outer flow under the form of new vortices if v, > 0. (If v, < 0 the buffer
is empty.) The values of " have also been computed and the vortex sheet is
repositioned.

The outer flow is then advanced, which involves the computation of the
velocities, the motion of the vortices, and the mergings. The program is now
ready to start a new loop by determining the vortices to be put into the buffer
(Fig. 14).
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IV) RESULTS.

1) Parameters.

The main parameters are the number of vortices, IV,, the time step, At, the
core radius, o, the distance, Ry, from the wall where newly created vortices
are placed, the grid thickness, §, and the artificial dissipation coefficient, ¢,
if KPD3 is used, and the parameter, Dy, of the merging device.

a) Number of vortices, Ny.

The cost of a computation depends strongly on N, since the computer time
per time step is roughly proportional to N2; naturally, the larger N, is the
greater the details that are reproduced and the more accurate the simulation.
It is impossible to rationally select a minimum value of N, for a particular
situation. One should observe the solution and ascertain whether the smallest
features considered significant contain at least several vortices and therefore
have some degree of structure and some ability to be strained. (A good
graphics system is essential for the monitoring of vortex computations). If
an eddy contains cnly one computational vortex i+ 5 effectively circular, and
of size 0.

A more quantitative estimate of accuracy, in selecting the value of N, to
be used, is the tolerance Vj for merging. '[he larger N, is the later the
mergings will occur and the smaller V; will be. As an examle the same code
(K +D1) was run for the same case (a square) with N, = 800, then with
N, = 1200 (Fig. 15). At the end of the simulations V; was 7.6 X 10~* in
the first case and 1.7 X 10~* iz the other case. The difference is significant:
with 800 vortices, mergings occured that caused a disturbance four times as
strong as would be allowed with 1200 vortices. However both values are small
compared to Uy.
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For a single smooth body a value of 1000 is generally sufficient: the
significant eddies in the flow are not very small and the other sources of error
(boundary layer assumptions, turbulence model, etc.} probably dominate. If
the body has sharp corners or a trailing edge then larger values of N, might
be desirable. The need for resolution is also stronger if the separating boun-
dary layer is very thin; for example, the circular cylinder in the critical range
of Reynolds numbers. In that case 1600 vortices were used. Finally, with
several bodies the wake of the first body interacts with the other bodies; then
it is justified to use much more vortices. The Vortex Flowmeter simulations
described in Reference [41] used N, = 3600.

b) Time step, At.

As was the case for N,, the choice of At is a compromise between cost and
accuracy.

The Lagrangian method can be quite accurate in the wake without a very
short At¢ because accelerations are moderate there, which makes Eq. 7 easy
to integrate accurately. Similarly the Eulerian method in the boundary layer
can be accurate without a very short step: the boundary layer often evolves
slowly and in that case C. F. L. numbers much lafger than 1 are acceptable
(the C. F. L. number is |[U|At/As, with U the local velocity and As the grid
size in the s direction). The region that demands a short step is in general
the intermediate region, and this is for two reasons. First, the vortices that
are just outside the inner region often pass several grid points in one step
while the inner region points interact only with their immediate neighbours.
This can create an imbalance because the signais do not travel at the same
celerity in the two layers. Second, if the time step is long the newly-created
vortices are stronger (their circulation is proportional to At) and such strong
vortices disturb the inner region.

To estimate an acceptable value for At the user should observe the simula-
tion where the body has tight curves; if At is too long the vortices will not
follow the wall. The C. F. L. number should not be much larger than 1.
In general the results depend on At more directly than on NN,; one of the

64



weaknesses of the method is that it is only first order accurate in terms of
At.

c¢) Core Radius, 0.

Unlike N, and At the core radius does not influence computing cost and an
optimum value exists, instead of a compromise between cost and accuracy (in
Ref. [45]) we systematically determined this optimum value in a few simple
cases). If o is large, the velocity is very smooth locally and the noise is low:
as a result the vortices will not scatter much. On the other hand a large
core radius can suppress velocity gradients that are physically significant and
"freeze” a coherent structure that would be better represented if the cores
were small enough and allowed it to evolve.

Fig. 16 shows the same flow computed with ¢ = .005 and then ¢ = .05. It
is clear that the simulation is not very sensitive to the value of o: changing it
by a factor of 10 did not cause a striking difference. As a rule, o should be of
the order of As/2, where As is the spacing of the points along the wall. The
value of o influences the coupling between wall points and creation points, in
the same way as the value of Ry does (see subsection d)).

d) Distance Rp.

The points where new vortex blobs are introduced are located at a distance
Ry over the wall. In addition, vortices that are found within a distance Ry of
the wall are treated as being absorbed by the wall layer. Thus R; is a rather
important parameter.

It KPD3 is used, Ry is equal to §, so that the vortices are created at the
edge of the viscous region. If Core 1 is used, R, is equal to the core radius
0, so that the edge of the core is tangent to the wall.

If Core 2 is used in KPD1 or KPD2, Ry is an independent and non-
physical parameter. A good wvalue for Ry is about As/2, where As is the
spacing of the points along the wall. Much smaller values would let the
vortices go too close to the wall points (where the stream function is sampled)
and create noise in the pressure. Much larger values would weaken the
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coupling between each creation point and the wall point below it; again, the
result might be oscillations in the pressure distribution. Such oscillations
are a sign that the system is not functioning properly, and will also strongly
disturb the integral boundary layer solver.

For simplicity Ry is held the fixed for all the points along the wall. On
the other hand As might vary, for instance if wall points are clustered in a
region that is thought to require more resolution. (The selection of the wall
points and their clustering is left to the user). To keep the ratio Ro/As at a
value of the order of 1/2, the clustering of points should be moderate. in the
applications presented here points were clustered near sharp edges cor trailing
edges, or sometimes in the separation regions, but the ratio of the largest
value of As to its smallest value did not exceed about 2.

e) Selection of 4, for K PD3.

The thickness § of the computed viscous region results from a compromise
and can be chosen by observing the solution.

On the one hand, the larger the value of §, the greater the domain treated
by the viscous solver, which is good. (In addition, extending the computa-
tional viscous region is not very costly). The attached part of the.boundary
layer clearly must be contained in the grid; the vorticity contour plots are
belpful in ascertaining this. Another way to assure it is to compute the dis-
placement thickness, 6": it should be of the order of 6/2 or less along the
entire attached boundary layer. Near separation it is normal for 6" to be-
come comparable to § or even exceed it (vorticity of the two signs is present,
and as a result the centroid can have large excursions). Fig. 17a shows a
computation in which § was too small: the boundary layer reaches the edge
of the grid, even in a region with favorable pressure gradient. This defeats
the purpose of having an inner viscous region.

On the other hand, the larger ¢ is the less the boundary layer assumptions
are justified. The errors associated to these assumptions grow. These errors
are hard to estimate quantitatively, but the results often give indications
when § is too large: the stability decreases and oscillations appear near
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separation. Probably, the variations of the displacement thickness become
too steep and disturb the algorithm. Fig. 17b shows such a case.

f) Selection of €.

A small amount of artificial dissipation proves to be necessary to keep the
solution smooth in the inner region, so that the finite difference approgima-
tions are accurate. Since fourth-order dissipation is used, it is difficult to
compare the effect of the artificial dissipation with other sources of dissipa-
tion, for example the viscous stresses which are a :cond-order term. Fig.
13a shows a simulation with ¢ = 0. Ripples appear in the vorticity contours
and the other quantities involved with the inner region. The ripples are in the
s direction, which was to be expected since that is the direction in which the
grid is coarse and viscous stresses comparable in mag:itude to the convection
terms are not present.

This is why artificial dissipation is added only in the s direction. In Fig.
18b the flow is simulated with the grid and other parameters the same, but
€ = 0.8 X 10—5. The solution 1s now smooth. ¢ can be increased further,
even by a factor 10, without any apparent effect. This is important since it
shows that the dependence of the solution on ¢ is weak, provided that ¢ is
large enough to eliminate the ripples.

g) Merging parameter, Dy.

The effect of Do was described in Chapter IIl. In this case also, the only
way to determine a good value for the parameter is to observe the simulation.
However, a good rule is to make Dy about 5% of the body size if only one body
is present. If there are several bodies, more vortices are devoted to computing
the wake of the first body, so that it is not too coarsely represented when it
strikes the second one. To achieve this, Dy is made larger: about 50% of the
distance between bodies.
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2) Memory requirements and computing times.

a) Codes K PD1 and K PD2

The codes KPD1 and K PD2 have very similar requirements; the integral
boundary layer solver requires very little memory and computing time. The
total memory is about 10° words, and little effort was spent trying to reduce
it. It could certainly be reduced to about 0.7 X 105, With 200 wall points the
matrix alone requires 0.4 X 105 words. The computing time with N, = 1100
and N, = 200 is about 0.4 seconds per step on. the CRAY-1. This figure is
probably close to the minimum; the program was carefully written to reduce
the CPU time and all the major operations were vectorized. Theses operations
are the computations of the interactions (O(N?2)), the merging tests (O(N2)),
and the computation of the stream function at the wall points (O(IN,Ny)).
The non-dimensional time step U, At/c was 0.015. Thus a complete period
of oscillation for the square body requires about 250 seconds on the CRAY-1.

b) K PD3 code.

The KPD3 code requires a fair amount of additional memory for the
differential boundary layer solver; the total is now about 2.8 X 10% words in
the high resolution runs (again, no special effort was devoted to lowering the
memory requirements). The additional CPU time required for the boundary
layer is modest: about 15%. The other operation that is more time-consuming
is the computation ¢” 1. velocity fleld induced by the vortex sheet at the wall.
It is O(NyNy) and now involves a complex logarithm, whereas in K PD1 and
K PD2 only arithmetic operations were involved.

Simulations of the circular cylinder with K PD3 were run with two levels
of resolution. At the lower level N, = 1100, Ny, = 200 and At = 0.025, and
the CPU time was about 1.1 seconds per step, or 450 seconds per shedding
cycle. The high resolution runs used N, = 1600, N, = 300 and At = 0.02,
resulting in a CPU time of 2.1 seconds per step, or 1050 seconds per cycle.
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3) Results from the program K PD1.

a) Flow around a square.

The flow around a square is a good test because the viscous effects seem to
be reduced to a minimum. The experiments exhibit a flat drag curve from
Re = 10* to Re = 107 [57], probably because the primary separation occurs
at the front corners irrespective of boundary layer thickness or of its laminar
or turbulent character.

The computed mean drag coefficient is 1.8; the experimental value is 2.
The computed Strouhal number is .11, which agrees with experiments. These
results were obtained with Core 1, N, = 1000, N,, = 320, 0 = R; = .02
and At = .03 (U, = 1 and ¢ = 2). The tendency to underpredict the
drag of the square is real: with other sets of parameters the drag was often
even lower than 1.8, of the order of 1.4. This is a little disturbing since the
case of a square was chosen precisely because complex viscous effects are not
thought to be present. One possible cause for the inaccuracy is the difficulty
for the algorithm to model the flow near a sharp corner, where the radius
of curvature is small even compared to the size of the vortex cores and the
spacing of the vortices.

b) Starting vortex at a sharp corner.

This example illustrates " viscous” behavior in the simulations done using
the Vortex Method. In this case the viscous character is properly, although
fortuitously, reproduced.

The body is a diamond and is a fair represcntation of the experimental
situation in Ref. [1], for short times after the start. TlLe case chosen here
is an argle of 60° and a constant velocity after the impulsive start (3 = 1/3
and m = 0 with the notation in [58]). We shall focus on the flow pattern
near one of the corners a short time after an impulsive start (the Kaden
Vortex), and compare it with the experimental pattern. At time zero the
flow is irrotational and as a result the velocity tends to infinity at the coruer.
This is the solution to the inviscid equations and it would stay unchanged
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at all times. However, in the numerical solution, vortices are seen to leave
the wall and form a starting vortex that resembles a spiral (Fig. 19a). The
streamlines also show that the flow leaves the surface at the corner along the
tangent to the upstream face; this pzttern is generally accepted as correct
and cousistent with the Kutta condition. The streamlines are also shown
in Fig. 19a and reveal the topological structure of the velocity fleld, with a
half-saddle point at ¢hie corner and one on the back face.

Visual agreement with experiments is good. In addition, the growth of the
length scale with time was compared with similarity theory. This theory, for
an angle of 60°, predicts that the length scale will be proportional to t3/7
(B. Cantwell, personal communication). In Fig. 19b, the distance from the
tip to the point of zero velocity (near the center of the spiral) is plotted as
a function of time, in Log-Log coordinates. The curve is close to being a
straight line and its slope close to 5/7. The Vortex Method has succeded in
simulating the formation of a starting vortex and associated establishment
of the Kutta condition.

In this case it is clear that the motion of the vortice: being advanced
finite step by finite step, cannot accurately follow the sharp kink in the wall,
especially if the magnitude of the velucity is large. After the first vorcices
have separated from the corner the flow pattern changes, the streamlines
become smooth and the velocities smaller, and the simulation can be quite
accurate. However the process, originally, is caused by inaccuracies in the
numerical solution of Eq. 7.

¢) Airfoil at 'ow incidence.

This case is shown only to illustrate how K PD1, a pure Vortex algorithm,
can become inaccurate when long stretches of attached flow are present. This
is a mzjor issue about the Vortex Method in general.

The flow around an airfoil at a low incidence, 10°, is shown on Fig. “".
treated by K PD1. The correct solution is a flow that rem=ir. ... coe
almost to the trailing edge, with a very narrow wake and ver: low 4 - :'he
lift is accurately specified by potential flow theory and the }..it2 - .pdi -
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is satisfied.

In the numerical simulation, on the other hand, separation (defined as a
departure of the flow from the solid surface) is seen to occur just lownstream
of the leading edge on the upper surface. As a result the wake is much too
wide, the drag is significant and the lift tco low, probably because the trailing
edge is immersed in the wake and the Kutta condition is not satisfled.

The strong thickening of the boundary layer is a clear manifestation of
the numerical diffusion that was described earlier (Chapter III). Basically,
the boundary layer as represented by vortices can remain attached only in a
significantly large and favorable pressure grac ent (it actually does along the
lower surface). Thus K PD1, and pure Vortex methods in general, are not
well adapted to the simulation of flows past streamlined bodies. For these
bodies, especially for airfoils, the accuracy will improve dramatically when
the boundary layer is treated properly. In Fig. 20b tLe same flow is shown,
treated by K PD2. The pattern is now correct and the quantitative features
like lift, drag and mcment much more accurate (see section 4).

4) Results from the program K PD2.

KPD?2 is used mostly to compute airfoil flows. KPD1 would not be
accurate because airfoil flows have long boundary layers, and K PD3 is still
restricted smooth shapes.

a) Attached flow on an airfoil.

This example is a direct test of the accuracy of the method, in an admit-
tedly simple case, by comparing it to an exact solution. A Joukovsky airfoil is
treated at an incidence of 5°. The solution for potential flow with the Kutta
condition satisfled is known analytically; the pressure coefficient predicted
by the numerical method together with the exact one are ccmpared in Fig.
21. The agreement is very good, which prcves two facts. First, the flow as
a who'e is very well predicted and the circulation has been properly chosen
by the algorithm to satisfy the Kutta condition. Second, the method of com-
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putation of the pressure, using Eq. 13, is accurate; this is importent because
Eq. 13 does not involve Bernoulli’s theorem, which happens to be valid here
but is not valid when vortical flows are simulated.

b) Starting vortex on aa airfoil.

Formation of the starting vortex and establishrr.ent of the Kuntta condition
are key features cf the flow around airfoils; they are responsible for the exis-
tence of lift. Traditionally, the Kntta condition has been added to inviscid
models in order io mimic a viscous phenomenon, namely the separation of
the boundary layer that takes place at the trailing edge if the fluid attempts
to flow around it. However the Vortex method, although it is in principle
inviscid, reproduces this viscous feature without any intervention. This is
another case in which the algorithm conveniently disobeys the inviscid equa-
tions: vortices are "thrown away” from the trailing edge if large veiocities are
present, until the circulation is correct and the trailing flow is smooth.

A convincing and probably accurate simulation of the starting vortex has
been obtained and compared with the results of Wagner's theory [2] . An
airfoil is started impulsively in an irrotational fluid. The airfoil is at incidence
but there is no circulation around it; thus the Kutta condition (in classical
terms) is not satisfled at time zero. The boundary .ayer is seen to separate
from the lower surface at the trailing edge in Fig. 22. The vortex sheet
it carries curls up into a vortex that is swept downstream. Since the total
circulation remains zero, a circulation of the opposite value is established
around the airfoil. This circulation grows with time, as does the lift on
the airfoil. This lift starts at about half the steady value; Wagner's theory
predicts an initial lift of exactly half the steady value. In general, agreement
between the two curves, shown on Fig. 23, is very good. Wagner neglected
the curling up of the vortex sheet and this might account for some of the
disagreement. Also, Wagner used thin airfoil theory and the steady lift curve
slope was 27; here the airfoil was 12% thick, which results in more lift. The
convergence of the lift to the steady value is made slower by the downwash
of the starting vortex; this dlownwash decays only like t—1,
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Also of interest are the motion of the center of pressure, and the presence
of drag, due to the downwash created by the vortex. At later times the center
of pressure is at the quarter-chord point and the drag is zero (i'ig. 22).

¢) Dynamic stall.

The next case is the dynamic stall of the same NACA 0012 airfoil. Dynamic
stall is a challenging problem, and a case was chosen for which experimental
results are available [60]. The zirfoil performs prescrited oscillations in pitch
with the pivot at the quarter chord. The incidence is a sinusoidal function of
time gives by

a(t) = ag + aysin(kUsxt/c) (99)

The Reyncids number is 2.510%. Tn the simulation, the lower boundary
layer was in a favorable pressure gradient and generally it did not undergo
t-ansition and did not separate until the trailing edge. The upper boundary
layer tended to undergo tramsition anu rer:iin attached at low angles of
attack; at high angles of attack, it separated while still laminar. It switched
instantaneously from one state to the other; this is not very satisfactory, but
is inherent in the transition model that was used. Also, separation bubbles
in which the separated shear layer makes a transition and reattaches on the
upper surface cannot oe reproduced by *he algorithm. This i3 unfortunate
since such a bubble is probably present, at least during part of the cycle
(K PD3 was written to eliminate these shortcomings as far as possible).

The history of the flow dur‘ng one cycle caa ve fuilcwed on Fig. 24. The
airfoil together with the vortices are shown; the force is displayed in terms
of its magnitude, direction and axis of application (the center of pressure).
Finally, the dashed linc shows the suction distribution, measured normal to
the surface and referenced to the stagnation pressure. The cycle begins with
attached flow at 5° incidence; the x{utta condition is satisfled as evidenced by
the smooth wake emanating from the trailing edge. The center of ressure is
very close to the quarter-chord, which is expected for a symmetrical airfoil.
As the incidence rises, counterclockwise circulation is shed; lift on the airfoil
rises and the suction peak at the .ose gets larger. At z™out. 20°, the pressure
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gradient that follows this suction peak bccomes too severe and the upper
boundary layers fails to undergo transition; it separates instead from the nose
of the airfoil. A vortical region of moderate thickness forms on the upper
surface. The flow then reattaches for a short time before envering the fully
stalled condition (it .s not certain whether this reattacument is physically
correct).

After the incidence passes its maximum of 25°, the flow on the upper surface
remains separated and large eddies form on the upper surface. These eddies
are accompanied by low pressure regions. The surface pressure distribution is
strongly disturbed; the center of pressure moves away from the quarter-chord,
mostly towards the trailing edge. The iift stays roughly constant until the
in~ ier s back to about 15°, then falls. During the rest of the cycle, the
lai e vortices are progressively washed away and the flow reattaches on the
upper surface. The center of pressure still has large excursions: this would
be felt as buffeting in an airplane.

Figure 25 presents the numerical results for the normal force coefncient and
the moment coeflicient, compared with experimental results reported in [60].
The experimental results are phase wersged over a large number of cycles.
Three successive cycle, of computation are shown; the first cycle is not as
representative since it svarted from fully irrotational flow. Three cycles are
too sinall a sample for phase-averaging and this is why individual cycles are
shown.

The agreement is auite good. However, the peak value of the normal
force is lower in the computations. The peak value of the moment is also
significantly lower; the experir ents exhibit a large peak during the phase
called "moment stali”. Another area of disagreement ic during the low
incidence period. Reattachment often seems to take an unexpectedly long
time in the computations and this might accouut for the difference. It is
hoped that these disagresments will be better understood when the tunnel
walls are inclrded ip the computation.

Figure 2€ ziows the pressure distribution on the airfoil during dynamic
stall, after it has been Fourier-transformed in time. The mean pressure is
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shown, as well as the in-phase component (the phase being given for the
incidence by Eq. 99) and the out-of-phase component. Each component has
been non-dimensionalized, the mean is divided by the mean incidence o
and the first harmonics are divided by the amplitude ;. The agreement
between data extracted from different cycles is fair. The difference between
the mean and the in-phase components, and the existence of an out-of-phase
component, are manifestations of the non-linear behavior of the flow.

d) Tilt-Rotor wing in hover.

The " Tilt-Rotor” concept combines many of the advantages of wingborne
aircraft and of helicopters and has been studied for many years. NASA and
Bell have recently conducted a very successful experimental program which
included the construction and testing of the XV15 aircraft. A production
version called JVX is now being developed and more emphasis is being placed
on performance. One factor in the hover performance is the download ex-
perienced by the wing in the downwash of the rotors; both an experimental
program and a numerical study are under way at NASA Ames to improve
this aspect of the system.

A Tilt-Rotor aircraft has two rotors that can point vertically for vertical,
helicopter-like take-off and landing, and also point forward for airplane-like
forward flight. The Tilt-Rotor is much more efficient than a helicopter in for-
ward flight because it avoids the asymmetric conditions than deteriorate the
operation of the helicopter rotor, with the advancing blade experiencing drag
rise from high subsonic Mach aumbers and the retreating blade experiencing
low dynamic pressures and stall. As a result the Tilt-Rotor is much faster
and has a lower fuel consumption than the helicopter; its development was
delayed mostly by aeroelasticity and control problems.

The Tilt-Wing concept, in which the wing tilts with the rotors, was not
as successful probably because it required a heavy articulation at the wing
root, and had more severe control problems. However, for a Tilt-Rotor when
the .otors are pointing up the wing is still horizontal and placed in the
downwash of the rotors; this creates a downward force on the wing which is
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very significant especially since hover is the most critical condition in terms
of payload. The objective is to decrease this force by improving the shape of
the clean wing and by adding devices, like flaps, that could also serve as high
lift devices for slow forward flight.

Almost all of the wing is in the downwash, which is far from being uniform.
An accurate computation of the three dimensional flow is presently out of the
question; the computations will be done in two dimensions and are expected
to show trends and provide guidelines for the choice of the airfoil and landing
devices on the wing.

The Tilt-Rotor wing can be quite thick since the Mach numbers it reaches
are not very high; the main advantage is a lighter structure and more space for
fuel and other components, but the larger thickness coincidentally improves
the situation with regard to download. The NACA 4421 airfoil was chosen
for the first stage of the numerical study and three landing devices were
considered: two kinds of trailing edge flap and a leading edge device. Both
fiaps span 25% of the chord; the first one pivots sbout a hinge that is within
the thickmess of the airfoil and the second one has the hinge at the lower
surface. The deiiection of the flap introduces an arc of a circle as part of the
top surface; the first flap has a circle of smaller radius than the second. This
curvature was expected to strongly influence the separation of the boundary
layer and therefore the global force. The leading edge modification involved
rrmoval of about 10% of the chord, thus reducing the effective chord and
increasing the leading edge radius, with again a favorable effect on separation
(the part of the airfoil that is removed would be placed under the leading edge
and thus shielded from the mainstream).

The KPD2 program was chosen. All cases were run with the same
parameters to allow a comparison. The Reynolds number was 107, and the
bcundary layer underwent tramsition; all the shapes were defined by about
200 points, with At = 0.03, Ry = ¢ = 0.02, Dy = 0.2 and N, = 1000.
Several thousand time steps were necessary for an average value to emerge;
this represents 20 to 30 minutes on the CRAY-1.

The flat plate was treated under the same conditions to provide a reference;
the result for the drag was about 3.5, compared tc the experimental value of
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about 2 [5]. Thus all the results are probably higher than the correct values;
however, this does not prevent a comparison between different configurations,
which was the main objective of the study.

Figure 27 shows the drag computed for the flat piate reference, both flaps
with deflections ranging from 0 to 90°, and the modified leading edge with
the large radius flap. Th~ clean airfoil had a drag coefficient of 2.8, which is
also thought to he higher than the correct value.

It appears that the two flaps give results that are much closer than one
would have expected, and that the small radiu-, flap can even have less drag.
In retrospect, the reason is probably that even when the flow separates from
the top surface at the hinge it can reattach on che flap; see Fig. 28 (in
Fig. 28 the airfoil, vortices and force are shown, as well as the instantaneous
streamlines). The size of the separation bubble will not influence the drag.
Furthermore, at low deflections the large radius flap actually increases the
chord of the airfoii, compared to the small radius flap; this conld explain why
the small radius flap is better helow 45°. At higher deflections the advantage
of the large radius flap in terms of delaying the separation seems to come
into play; however the difference is probably not large enough to override the
structural considerations and dictate the choice of the flap.

Anotier lesson learned is that low flap deflections barely reduce the drag;
here, a linear decrease could have been expected. The drag then reaches
a minimum around 75°, and then rises again; this is probably because the
flow does not reattach on the flap any more (Fig. 28). This character of
the drag curve, with a plateau at low deflections and a minimum at less
than 90°, was observed in measurements performed on the aircraft itself; a
more quantitative comparison will not be attempted since the flow is strongly
three-dimensional.

A third lesson learned is that the leading edge modification reduces the
drag appreciably without flap deflection, but loses almost all of its effect
when the flap is deflected to 75° (Fig. 29). This was disappointing and no
convincing explanation has been found. Other types of leading edge devices
are now considered.

The flows exhibited a shedding »f large vortices; the Strouhal numbers were
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of the order of 0.15, which represents rather slow variations of the loads. Some
configurations also gave rise to a significant force normal to the airflow. The
clean airfoil had low pressure near the leading edge and a small forward force.
With the flap deflected, rearward forces of the order of 0.5 were observed.
These might have to be taken into account since the available control power
is not very high in a hover condition.

As a whole this study demonstrated the flexibiliiy of the method in treating
many different shapes, and produced consistent and useful results even in a
"first pass” with a set of parameters that was not optimal. It also gave clear
indications about the structure of the flow, for instance the presence of a
bubble at the hinge. In the near future a more extensive study will involve
the actual XV15 airfoil, flaps and other possible devices, wall effects, and will
be directly compared to wind tunnel tests.

5) Results from the program KPD3.

The program K PD3 has been applied only to the circular cylinder.
Axtempts to treat airfoils with K PD3 were unsuccessful; the algorithm seems
to be unable to treat the trailing edge region properly. The most likely ex-
planation is that the boundary layer assumptions are simply not applicable
in a region where the wall has so much curvature.

The flow around a circular cylinder is the most classical bluff body problem
and the best documented. It is also a good test of the ability of the program
to predict the stucture of the boundary layer. Its dependence on the Reynolds
number is known to be strong. The range of Reynolds numbers that were
considered is from 10* to 3.16 x 107.

The value 10* is considered to be roughly the lower limit because at Re =
10* the thickness of the viscous region is about 0.035, which is not very
small any more compared to the radius of cutvaturz. which is 1. As the
Reynolds number decreases, use of the boundary lay:r assumptions become
less justifiable.

The value of 3.16 x 107 was chosen as the upper limit; experiments have
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been conducted up to about 0.8 X 107. Agreement between numerical and
experimental results was found to be quite good in the upper range. Therefore
it seems reasonable to consider extending the range of the numerical simula-
tions by this factor of 4 in Reynolds number. Furthermore, the turbulence
model has been validated at Reynolds numbers slightly higher than 197 {50].

Fig. 30 shows the global numerical and experimental results for the drag of
a circular cylinder. Fig. 31 shows the Strouhal number and Fig. 32 the mean
separation angle. Fig. 33 shows the pressure distribution at eight different
Reynolds numbers. These cases include Re = 10%, 105, 10% and 107, some
extra cases in the critical region: 105 (3.16 x 16°), 1057% (5.62 x 105) and
10%-3 (3.16 x 10%), and finally 107-3 (3.16 X 107). Exnerimental results are also
shown when available, [61],[62],[63],(64]. Fig. 34 shows the wall shear stress
coefficient at the same Reynolds numbers. In order to make comparisons
easier the scales are the same for all the pressure plots and for all the shear
stress plots, except 10%.

The Strouhal number was determined by counting the apparent number of
periods in the lift signal during the simulation, using plots like the ones in
Fig. 40. If the length of the sample is of the order of 5 periods, this way of
determining the Strouhal number is accurate although somewhat arbitrary.
Another way is to Fourier-analyze the signal; however one still has to "clip”
the sample to simulate a periodic signal, which is also arbitrary. The Fourier
analysis method is reliable only if long samples are available; experimental
results often provide hundreds of cycles, but computations do not, for obvious
cost reasonc. As a result, the spectra contain subharmonics which would
probably disappear if longer samples were available. In that sense, these
harmonics are not meaningful, physically (see Fig. 41).

The mean separation angle was defined as the time-average of the angle at
which the instantaneous shear stress is zero. This does not coincide with the
angle at which the time-average of the shear stress is zero, because the shear
stress is a strongly non-linear function in that region. Actually, in some cascs
the numerical resuits for the shear stress do not cross zero. This point will
be developed later.
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a) Subcritical regime.

This regime exists for Reynolds numbers under approximatively 105. The
drag and Stroubal number are almost constant, and the evolution of the flow
as the Reynolds number increases is weak (although the base pressure does
change, and the lack of change in the drag is fortuitous [65]). Both boundary
layers separate while still laminar and the separation point does not move
significantly. The shear layers transition in the wake and transition occurs
closer to the cylinder as the Reynolds number increases [65]. Apparently the
"drag crisis” starts around Re = 2 x 10° when the process is complete and
transition occurs in the boundary layer just before or after separation, rather
than in the wake. As a result, the boundary layers reattach and separate
again, only farther downstrcam.

In the numerical results the boundary layers never traZ.itioned for
Regnnlds numbers of less than 3.16 X 1C°. Thus the only evolution with
Reynolds number is the thickness J of the viscous region, which scales with
Re—1/2, from 0.035 at 10* to 0.015 around 10°. The average separation
angle is almost constant around 84°. The Strouhal number is between 0.205
and 0.195, which is considered a good prediction. The drag coefficient on
the other hand slowly decreases from 1.42 at 10* to 1.03 at 10° and 0.88 at
3.16 x 10°. This is not very good since, experimentally, the drag does not
decrease in that range.

The pressure and shear stress distributions are correct qualitatively, but
the quantitative differences which cause the inaccuracy in the predicted dr~g
are obvious. At 10% the bare pressw is -0.85, compared to -1.25 in the
experiments. There is a significant pressure rise downstream of the separation
point, which is no* correct physically.

The average shear stress remains positive until the 110° point is reached,
while the mean separation angle is 85°. The reason for this paradox is
clear on Fig. 35b, which shows a still of the simulation at Re = 10°.
The instantaneous shear stress crosses zero, but has signiflcant oscillations
Aownstream of that point. As the flow oscillates the separation point inoves
back and forth and, in the average, the shear siress remains very close to
zero instead of being frankly negative as in the experiments. This value
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of the shear stress is small and results from the averaging of much larger
numbers; therefore, although the situation secwms incorsistent physically, the
inaccuracy is quantitatively small.

Figure 35a shows the state of the inner flow at the same instant. It includes
vorticity contours and the values of U,, V, and C, (the inner region has been
unwrapped from the cylinder and the scale expanded in the n direction).

Starting from the center of the figure (front of the cylinder) the two boun-
dary layers of opposite sign divide and progress along the wails. The mag-
nitude of U, increases, the pressure decreases (favorable gracient) and V, is
negative (flow into the inner region). The wall chear stress (plotted in Fig.
35b) reaches a maximum. In the region near Y0° the situation changes. The
pressure gradient reverses and is now adverse; V, becomes positive and the
flow as a whole starts moving away from the wall, taking the vorticity with
it. The shear stress rapidly falls to zero. Finally the vorticity leaves the
inner region: U, falls to zero and the shear layer is now in the outer region
under the form of vortices. Downstream of the separation region the pressure
fluctuates as the eddies contained in the outer region progress along the wall.
However the time-averaged pressure is smooth and almost constant in the
wake region.

The behavior that was just described is consistent with what is known of
the flow. The comparison between Fig. 35b and Fig. 36 probably explains
why the numerical results differ significantly between Re = 10% and 105.
Fig. 36 shows that at 10* the separating shear layer is much thicker than at
105. As a result, it; breakdown into circular vortices is slower and occurs
farther away from the wall region. Being thicker the shear layer is also
better represented by the limited number of vortices that are available. In
contrast, at 10% it becomes difficult for the vortices to properly model the
shear layer; the vortices are seen to linger near the wall while they separate
more cleanly at 10%. Very prcbably, the vortices cause tco much mixing
too soon, which creates a situaiion analogous to a turbulent boundary layer:
a layer with strong mixing and a laminar sublayer. This situation is not
incorrect physically, but the intense mixing is partly of numerical origin and
may not be quantitatively correct.
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To support this conjecture the flow at R¢ = 105 was simulated with two
levels of numerical resolution. At the low level N, = 1000, N,, = 200 and
At = 0.025 were used. At the high level N, = 1600, N, = 300 and Af =
0.02 were used. The results were significantly different: the Cj; is 0.8 with low
resolution and 1.03 with high resolution (the correct value is 1.2). We can
conclude that the regime just below critical and the critical regime itself are
the most difficult to simulate, because the shear layers are very thin, and the
level of resolution used is not quite sufficient.

Other quantities have been computed to compare with experiments. The
average velocity a? the edge of the attached boundary layer is shown in Fig.
37. The agreement with the experiments reported in [65] is excellent. This
is consistent with the good agreement shown by the pressure in the same
region.

The value of the streamwise veiocity on the centerline behind the cylinder is
shown on Fig. 38 and compared with experiments from [62]. The agreement
is good in the near wake but worsens in the far wake. The computaticns
seem to introduce less dissipation than the experiments indicate. This was to
be expected since the successive merging of the vortices in the wake tends to
concentrate the vorticity whereas in the real flow the turbulent stresses spread
it. It seems that the description of the wake is adequate up to approximatively
2 diameters of the back of the cylinder.

In conclusion, the subcritical regime, even though the boundary layers are
laminar, appears to be more sensitive to transition in the near wake thap
was expected. A more accurate description of this region is probably needed.
Another possible source of error iy the three-dimeasional character of the
real flow; the consensus seems to be that large scale three-dimensional effects
are not very strong in the subcritical regime, but small scale effects like
streamwise vortices might play an important role in the transition regioa.

b) Critical regime.
This regime is the most complex and the most difficult to model. An
intense evperimental activity to measure and describe the flow accurately is
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being carried out, [61]. It has long been known that tue drag coefficient takes
very low values, of the order of 0.25, and that vortex shedding is disrupted
[64]). It was also known that this "drag crisis” is associated with transition in
the boundary layers {1]. Recent experiments have shown in addition that the
decrease in the drag is probably not smooth but occurs in steps instead, and
that the flow can be in states with a non-zero average lift [61]. Finally, the
span-wise coherence of the real, three-dimensional flow is probably weakest
in the critical regime [67].

The numerical method essentially failed to model the critical regime. This
is not very surprising; the dramatic changes in the flow pattern are probably
associated to reattachment of the boundary layers, or of only one of them.
Reattachment is a delicate phenomenon to simulate; it requires a very ac-
curate coupling if a zonal viscous-inviscid approach is used, and in any case
a very fine transition and turbulence model [55]. The turbulence model used
here was not designed with low Reynclds numbers in mind. Furthermore
the transition model was designod for attached boundary layers. It is a "one-
diwaensional” model in which the whole boundary layer transitions at once.
In contrast the results in [55] showed a very non-uniform turbulent energy
across the layer.

As mentioned earlier ‘ransition was not predicted by the simul: ‘ions for
Reynolds numbers of 3.16 X 10° or less; for Reynolds numbers of 10® or more
transition always occurred in both boundary layers. In that sense, the critical
regime predicted by the computations is between these two values of Re. At
Re = 5.62 X 10° transition was intermittent; in Fig. 39 trausition is seen to
occur in only one of the boundary layers, as can be inferred by the sudden
rise in the wall shear stress. However the simulation did not stay locked in
either position (Fig. 39a and 39b). As a result the stable, asymmetric, lifting
situation that was observed in experiments [61] was not obtained. The low
drag values were not observed either.

'i'a« shear stress distribution at 5.62 x 10° reflects this intermittent tran-
sitior. it has a plateau between 90° and 110°. The pressure distribution does
not compare well with experiments, if only because it is essentially symmetri-
cal.




One feature of the critical regime that is observed is the alteration of
the vortex shedding pattern. Fig. 40 shows the drag and 'ift as function
of time in the simulations at Re = 10%, 3.16 x 10° and .16 x 10%, and
Fig.41 shows the spectra of the lift signals. The lift has a fairiy well defined
oscillation at 10* (although strong modulations are evident) and very regular
oscillations at 3.16 x 10%. At 3.16 x 105 the lift keens the same sign for
much longer periods of time and its behavior is very far from being harmonic.
This impression is confirmed by the examination of the spectra: the peak
is much broader at Re = 3.16 x 10°. This might be an indication that a
small modification of the conditions could cause the simulation to find the
stable asymmetric configuration. However, the samples were too short for the
spectra to be entirely reliable. For instance, the peak at a Strouhal number
of approximatively 0.08, at Re = 10°, is thought to be spurious.

In conclusion, the correct simulation of the critical regime would probably
require a more elaborate transition and turbulence model (the McDonald-Fish
model used for the simulations in [55) was quite complex). However it seems
that the method should first be improved until it simulates the subcritical
regime very accurately before another attempt is made on the critical regime.

¢) Supercritical regime.

This regime exists for Reynolds numbers above approximatively 4 x 108.
Both boundary layers transition before separating and the flow is similar to
the subcritical flow, except that separation occurs much later, whi-h results
in a narrower wake, a lower drag coefficient and a higher shedding frequency.
The drag coeflicient seems to be almost constant again in that range (although
the experiments do not exceed 8 X 10%, so that, the " slatean™ is quite narrow,
covering oniy a factor 2 in Reynolds number).

The numerical results show slow variations of drag coefficient, Strouhal
number and separation angle up to Fe = 3.16 x 107. Separation does
occur later than in the subcritical regime, and the changes in wake patterr,
shedding frequency and drag are all correct qualitatively. The pressure and
friction distributions are almost Reynolds number-independent; the transition
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point just moves upstream as the Reynolds cumber increases. The agreerzent
with experiments for the pressure distribution is not excellent and the drag
coefficient is lower than the experiments indicate. However there is significant
scatter in the experimental resuits. The agreement in the shezr stress is poor;
the experiments do not show the steep rise associated with transition.

Numerically the simulations look "healthier” in that range than at lower
Reynolds numbers. The separation is frank and the pressure distribution is
smooth (Fig. 42 shows a still of the inner flow and Fig. 43 four stills of
the outer low. The non-dimensional time, based on velocity and radius, is
indicated and the four stills cover approximatively one period of shedding).
The reason is probably that the separating shear layer is thicker again, due to
the Reynolds stresses in the inner region. Another sigp is that at Re = 10°
the simulations with low and high resolution agree very weli (Figs. 33 and
34). This indicates that the resolution is sufficient.

In conclusion, the supercritical regime is easier to simulate from a numerical
point of view, and the Baldwin-Lomax turbulence model seems to work weli.
The accuracy of the drag is not easy to assess since few experiments have
been conducted in that range.

This concludes the description of the results obtained from the programs
KPD1, KPD2 and KPD3. These resuits show that the method can
reproduce many of the features of separated flows a- ~ is generally in fair
to good agreement with experimental predictions. There is, however, room
for improvement of the quantitative agreement, even in the frarework of a
two-dimensional method.
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V) CONCLUSION.

In this work we have developed a new numerical method for two-
dimensional separated flows. It incorporates an improved version of the
Vortex Method, to treat the inviscid outer region, and widely used integral
or finite difference methods, to treat the viscous inner region.

The numerical method uses a formulation of the equations in terms of the
vorticity. This formulation has been shown to be mathematicaily equivalent
to the conventional velocity/pressure formulation and includes cases with
solids in non-uniform moticn or rotation. It could also treat bodies in a
uniform shear flow.

The flow is treated as inviscid away frem the solid walls. This is motiv..ed
both by physical arguments (in the waks the large structures dominate and
are not very sensitive to the viscosity) and by numerical arguments (it is
not practical tu model structures so fine that the viscosity influences them
significantly).

It is shown that the Vortex Method can produce a significant numerical
diffusion. This diffusion is present ouly if velocity gradients are present; this
is an advantage, compared to Evlerian metheds. However strong gradients
are present in most viscous flows, especially near the wall. As a result, the
numerical ciffusion can have a dominant influence on the simulation.

In the first main version of the algorithm all the vorticity is represented
by vortices, but their departure from the wall is delayed, \/ necessary, so
that separation occurs at the proper location. This location is predicted by a
boundary iayer solution based on au integral method, which is run in parallel
with the vortex solution.

PRECEDING PAGE BLANK NOT FILMED
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In the second main version, a thin region near the wall is treated =s viscous,
with boundary layer assumptions. This inner region is treated by a Finite
Difference method. The key assumption is not the neglect of the streamwise
viscous term vH%w/As?, since ceriered finite differences are used in the s
direction anyhow, it is the neglect of the §v/An term in t*2 vorticity (to avoid
the solution of an elliptic equatiou for the velocity) and the coupling with tke
outer flow by means of a vortex sheet (to simplify the interaction between
the two regions). The coupling algorithm is the most delicate element of the
algorithm, and ca. :eate problems especially if the wall has tight curves.
However it is an essential ingredient to make the method versatile and lessen
its dependence on empiricism.

The new method conserves the traditional advantages of the Vortex Method
for thie treatment of the wake: it is grid free and accurate in modeling
transport phenomena, it treats the far fleld in a simple and accurate way
It requir- » much le- ; memory rpace and possibly less computing eflort than
comparable Finive Diflference methods. . In addition the method can now
treat arbitrary solid bYodies or grou »s of bodies; conformal mappings are not
involved.

Many choices have to be made when designing a practical method. Some
of these choices ¢ould be made in a systematic way: for instance the design
of the merging device. Some choices were made on a more intutive basis,
and thereiore could probably be improved: for instance scme details of the
coupling procedure, and of the implementation of the turbulence model.

In its first version the new method treats bluff bodies r-'iably and ic quite
accurate. With separation properly contvolled it simulat«s the stzll of air-
foils accurately; the comparison with experimental results is very encourag-
ing. Some possible reasons for .he remaining dicagreement are the thres-
dimensional characver of the real low, which the method is unable to account
for, and the interference with wind-vunne: walls. These wall effects are being
added to the method.
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The second version has been used for an extensive study of the flow past
a circular cylinder at Reynolds numbers ranging from 10% to 3. x 107. The
change in wake pattern and decrease in the drag coefficient as the boundary
layers switch from laminar to turbuient are clearly observed, even though
the pattern in the critical range itself is not correct. In this range, the
+hree-dimer.sional effects are probably quite strong, and the modeling of
{ransition and turbulence is the most delicate. In the supercritical regime
(-.00ove 3. X 10%) most of the flow characteristics are essentially constant and
agree well with experimrental results. In the suberitical regime (from 10% to
2. X 10°) the shedding frequency is accurate and the drag is close to the
correct value. However the drag coeflicient tends to decrease steadily as the
Reynolds number increases, which is not correct. This seems to be due to a
"transition” of the separating shear layers which is not accurate, physically.
This problem could be alleviated significantly, although not suppressed, by
refining the discretizaticn. However, a further increase in the compuiation
cost might not be the best answer; it would be preferable to improve the
algorithm in some way.

The prospects for the method developed here to be applied to practical
cases, at least in its first version, are good. This version already has two active
research applications: the Tilt-Rotor Wing study and the Vortex Flowmeter
study. Both projects are continuing and a favorable interaction between the
numerical work and the experimental work is building up. The second version
will probably be used for further investigation of the circular cylinder flow.

For the future many extensions are possible, especially for the second
" method. They include:
¢ The introduction of a boundary layer model of higher order, with curva-

ture terms, in the hope of treating bodies with tight curves.

e The refinement of the coupling algorithm in the spirit of the "strong in-
teraction” theories for the separation region. A more mathematical approach
could be taken; the improvement of the coupling might involvc « more com-
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plex model than the single vortex sheet placed at §".

e In the long term the inner region could be of order 1 in thickness and be
treated by a full Navier Stokes solver. This should remove all the problems
associated with boundary layer assump‘ions. On the other hand it would
probably demand a much more complex coupling procedure, as well as the
solution of an elliptic equation in the i.ner region instead of Eqs. 29 and 30.

e The introduction of a more elaborate model for transition and for the
turbulent stresses, in the hope of reproducing the well-known "drag crisis” of
the circular cylinder and the recent findings about stable asymmetric states
and discontiruous variation of the drag coefficient. However, such a model
is not readily available, and in addition it might be that a two-dimensional
model will never be able to account for the drag crisis. This question is open.

o It has been proposed to couple the Vortex Method to a flnite difference
method to treat compressible flows; the finite differences would harndle the
compressible effects efficiently on a fairly coarse mesh while the vortices would
provide a fine description of the thin shear layers in the wake. The theoretical
work to support these ideas has not bee1 done yet.

o The extension to three dimensions, ‘o treat wings or cars for instance.
The validity of two-dimensional analysis for such cases is very lini:" 2d, and a
relatively crude three-dimensional method might be more useful than a " fine-
tuned” two dimensional method. The power of a CRAY should be sufficient
for simple cases, and the treatment of the solid should not be very different
from the two-dimensional case. What is needed is a new three-dimensional
Vortex discretization that would be reliable and more flexible than the present
methods, with their connected fllaments; such methods are currently being
developed.

e
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APPENDIX A

This appendixz contains the description of the versions K PD1 and K PD2
of the program. They differ from K PD3 in the way they handle the wall
region.

1) Program K PD1.

This version is a pure Vortex Method. It is mentioned mostly to clarify
some issues about the Vortex Method and its ability to simulate some viscous
flows while solving the inviscid equation.

In K PD1 even the boundary layer vorticity is represented by vortices that
belong to the outer flow. The vorticity is immediately injected into the vortex
region instead of transiting through an inner region as in K PD3; the new
vortices follow the wall until they separate. The treatment of the wall region
is thus very simple (Fig. 36). The rest of the algorithm (blob shape, time
integration, merging, etc.) is the same as in the ou er region of K PD3 (see
Chapter IV). :

Fig. 37 is a flow chart of K PD1,; it is quite a simple program and a listi»e
of it is included in Appendix B.

2) Program K PD2.

In this version, the premature separation of the vortices tuat often occurs
with K PD1 (see Results), is artificially prevented on the basis of a boundary
layer computation. The boundary layer is compute? by an integral method.

The integral method is chosen for its simplici-y and low cost. The solvers
used are taken from Ref. [68): Thwaites' m~ iod for the laminar part of the
boundary layer and Head's method for - . turbulent part. Both methods
use a small number of integral quantities in the boundary layer as degrees of
freedom and compute the boundary iayer by marching in the stream direction,
using empirical laws for th- _volution of the integral quantities. Neither
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method can be used downstream of the separation point. Both methods were
designed for steady boundary layers; the unsteady effects on the boundary
layer were neglected. Finer integral methods exist that include the unsteady
effects; however these are probably weak compared .o the interaction with
the outer flow #hen massive separation occurs. Transition was modeled by
the Sclicht! g-Granville criterion as in K PD3.

The .upling between the vortex flow and the boundary layer is done as
foll-:ivs: the vortex flow determines the instantaneous pressure distribution,
>nd the boundary layer determines the separation points. Fig. 38 is a flow
chart of K PD2.

At each time step, the pressure distribution is computed from the outer
flow solution, using Equation 13. This pressure is then used as the forcing
function to solve the boundary layer equation (this is upstream of separation
and Bernoulli’s theorem applies). The upper and lower boundary layers are
computed, from the attachment point to their first separation point.

Experience with K PD1 shows that the vortices, if they are left free, always
separate too soon. Therefore making them separate w«t the proper location
is simrly a matter of delaying their natural separation. To achieve this, all
the vortices that were created upstream of the desired separation point are
marked as "temporary” and after one time step are removed and replaced
by a fresh layer of vortices. This prevents the vorticity layer from thickening
prematurely. The vortices that are created downstream of the separation
point are marked as "permanent” and treated as in K'PDI1; being in an
adverse pressure gradient, near the separation point, they leave the vicinity
of the wall quite promptly. Thus the vorticity layer is effectively released
into the outer flow a short distance dowrstream of the separation that was
predicted by the boundary layer solver.




s XoRkoke Ko Re Ko XKoo Ko Ko Ko Ko Ko Re Ko Ko Ko NoEvEoReRoNoNoNoNoNoNo Neo RoRo e Re)

APPENDIX B OF pony,

PROGRAM KPDI(INPUT,OUTPU, ,TAPE1, TAPES, TAPE®,
> TAPE5=INPUT, TAPE6=0UTPUT)

2D VORTEX TRACING SIMULA.ION PROGRAM.
PROGRAM WRITTEN BY PHILIPPE R. SPALART
IN COLLABORATION WITH ANTHONY LEONARD.
SEE AIAA PAPER 81-1246.
NASA AMES RESEARCH CENTER, NOVEMBER 1882.

INCOMPRESSIBLE FLUID. UNIFORM VELOCITY UINF
AT INFINITY, UVINF IS COMPLEX (MAGNITUDE: ABSUIN,
INCIDENCE IN DEGREES: ALPHA).

THE PROGRAM COMPUTES THE UNSTEADY FLOW,
STARTING FROM POTENTIAL FLOW.

THE SOLID SHAPE IS ARBITRARY, GIVEN BY THE ROUTINE SOLID.
IT CAN BE MADE OF SEVERAL SEPARATE BODIES.
TRIS VERSION OF THE PROGRAM IS SIMPLIFIED

AND MORE ROBUST (COMPARED TO THE ONE USED
FOR'THE PAPER) AND DOES NOT HAVE ANY
REYNOLDS NUMBER EFFECTS.

THEREFORE IT IS SUITED FOR SHAPES THAT DO NOT
HAVE A STRONG REYNOLDS NUMBER DEPENDENCE,
ESPECIALLY SHAPES WITH SHARP CORNERS.

FOR OTHER SHAPES, CIRCLES FOR EXAMPLE,

THIS PROGRAM GENERALLY GIVES RESULTS

CLOSE TO LAMINAR RESULTS (RE=10**5 OR S0).

THIS MAIN PROGRAM CALLS

READPR, GMTRY, INIT, MERGE, BCBODY ,MOVE.
WRITING RESULTS ON TAPES8, THEN READING THEM
FROM TAPE9 ALLOWS RUNS TO CONTINUE EACH OTHER.

COMPLEX Z,V,FORCE(2) HUB,20, WALL,ZCR,VM, UINF AVFO
REAL MOM(2),DPDS(215,1),CP(215,1),CPAV(215)

COMMON/VORTEX/NVORT,Z(2000),V(2000),VM(2000),
> GAMMA(2000)
COMMON/SOLID/NBDIES,NWALL (2), WALL(215,1),

> ZCR(215,1) HUB(2),20(3), THETA(215,1),NINC(2)

> JINC(15,2),XMAX(2)
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COMMON/SYSTEM/NDIM,A(215,215),X(215),IPVT(215)

READ AND PRINT THE PARAMETERS. ;
CALL READPR(ISTART ,NDES,NSTEP,N2,ABSUIN,ALPHA, ‘
> DELT,D0,GAMMAO)

SET UP THE GEOMETRY
DEFINE THE SOLID AND THE CREATION POINTS ON ITS SURFACE.
COMPUTE AND GAUSS ELIMINATE MATRIX OF INFLUENCE
COEFFICIENTS BETWEEN WALL POINTS, AND DO OTHER
THINGS THAT DEPEND ONLY ON THE SOLID.
CALL GMTRY(SIGMA2,CHARD)

INITIALIZE THE TIME-DEPENDENT VARIABLES.
CALL INIT(ISTART,NSTART,T,V0,ABSUIN,CHARD,D0)

UINF=ABSUIN*CEXP(CMPLX{0.,ALPHA*ATAN(1.)/45.))
AVFO=0

MAIN LOOP; ADVANCE FLOW TIME STEP BY TIME STEP.
WRITE (6,104)

104 FORMAT(//,” STEP BY STEP EVOLUTION OF THE FLOW:",//)

C

oNoNe!

oo NoNoNoNo R NoNe!

NEND=NSTART+NSTEP-1
DO1 N=NSTART,NEND

MERGE VORTICES TO KEEP THEIR NUMBER REASONABLE.
CALL MERGE(D0,V0,NDES,N)

TREAT BOUNDARY CONDITION AT THE BODY BY AN
EXCHANGE OF VORTICITY.
CALL BCBODY(FORCE,MOM,GAMMAO,N, T, UINF,
> CHARD,NOLD,CP,DELT,SIGMA2)
AVFO=AVFO+FORCE(1)

MOVE VORTICES.
CALL MOVE(UINF,SIGMA2,NOLD,DELT)

END OF MAIN LOOP.
STORE RESULTS IN CASE WE WANT A FOLLOW UP TO

THIS RUN.
WRITE(8) N,T,NVORT,Z,GAMMA,VM,V0

"¢
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C OUTPUT AVERAGE LOADS.
AVFO=AVFO/NSTEP
WRITE (6,100)REAL (AVFO) ,AIMAG(AVFO)
100 FORMAT(/,24H AVERAGE DRAG AND LIFT: ,2F8.4)
o
C END OF RUN.
STOP
END
SUBROUTINE READPR(ISTART NDES,NSTEP,N2,
> ABSUIN,ALPHA,DELT,D0,GAMMAO)

READ PARAMETERS.

ISTART=1 IF RUN IS FROM TIME 0.

ISTART==0 IF IT IS A FOLLOW-UP.

NDES DESIRED NUMBER OF VORTICES.

THE PROGRAM WILL ROUGHLY MAINTAIN

THE NUMBER OF VORTICES AT NDES. NSTEP NUMBER OF STEPS.

ABSUIN MODULUS OF UINF, ALPHA INCIDENCE

IN DEGREES. DELT TIME STEP.

D0 PARAMETER IN MERGING DEVICE. D0 SMALLER PUTS MORE

VORTICES NEAR THE SOLID AND LESS FAR FROM IT.

GAMMAO ALLOWS THE USER TO DISTURB THE FLOW TO

MAKE IT REACH THE SHEDDING REGIME FASTER.

GAMMA0=0 LEAVES IT UNDISTURBED.

GAMMAO.NE.0 ARTIFICIALLY ADDS A CIRCULATION

GAMMAO AT THE BEGINNING OF THE RUN.

(GAMMAO IS IGNORED IF ISTART=0).

READ (5,200)ISTART,NDES,NSTEP,N2

200 FORMAT(I1,3I5)
READ (5,201)ABSUIN,ALPHA,DELT,D0,GAMMAO

201 FORMAT(5F8.5)

c

C PRINT THE PARAMETERS.
WRITE(6,100)

100 FORMAT(//,” VORTEX SIMULATION OF BLUFF BODY FLOW",//)
[F(ISTART.NE.0O)WRITE(8,101)GAMMAO

101 FORMAT(" THIS RUN STARTED WITH CIRCULATIGN: " E8.2)
WRITE (6,102)NDES

102 FORMAT(/,” APPROXIMATE NUMBER OF VORTICES: ",16)
WRITE (6,103)ABSUIN,ALPHA

103 FORMAT(/,
>" FREESTREAM VELOCI™Y MAGNITUDE AND INCIDENCE ",2F7.4)
WRITE (6,111)DELT

111 FORMAT(/,11H TIME STEP ,F7.4)

sXeRoRoKeRoKeKoReReErResRoNoNoRoNe!
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WRITE (8,113)D0

113 FORMATY{/,

C

sNoNoNoNoNoNoNoNoEoNoNsNoNoNo Ne!

aoa Qo0

QO e

>" CHARACTERISTIC DIMENSION IN MERGING DEVICE ~ ,F7 .4)

RETURN
END
SUBROUTINE GMTRY(SIGMA2,CHARD,LA KA,LB,KB)

OBTAIN SOLID SHAPE, COMPUTE SOLID-RELATED ARRAYS,
GAUSS ELIMINATE THE MATRIX, +MISCELLANEOUS.
NBDIES NUMBER OF BODIES.

NWALL NUMBER OF WALL POINTS ON EACH OF THEM.
WALL ARRAY OF WALL POINTS. ZCR ARRAY OF CREATION POINTS.
THETA POLAR ANGLE OF ZCR POINTS.

THETA IS USED TO FIND IF V. RTICES ARE

INSIDE SOLID. Z0 USED ALONG WITH THETA.

HUB(L) IS THE HUB OF THE BODY "L”. INC WILL

HELP FIND OVER WHICH WALL POINT THE VORTEX IS,

BY BISECTION. THE FIRST DIMENSION

OF INC MUST BE AT LEAST LOG2(NWALL).

A IS THE MATRIX OF INFLUENCE COEFFICIENTS FROM
CREATION POINTS TO WALL POINTS.

INTEGER FIRST,NEXT|(215)

COMPLEX WALL,ZCR,Z0,HUB,INTSEC,2Z
COMMON/SOLID/NBDIES,NWALL(2), WALL(215,1),
>7ZCR(215,1),HUB(2),20(2), THETA(215,1),NINC(2),
>INC(15,2),XMAX(2)
COMMON/SYSTEM/NDIM,A(215,215),X(215) IPVT(215)

DEFINE SOLID.
CALL SOLID(NBDIES,NWALL,WALL,CHARD)

COMPUTE ARCLENGTH.
ARCL=0
NDIM=0
DO 9 L=1NBDIES
NDIM=NDIM+NWALL(L)
DO 9 K=1,NWALL(L)
ARCL=ARCL+CABS(WALL(K,L)-WALL(14+MOD(K,NWALL(L)),L))

COMPUTE CORE RADIUS.
RO=ARCL/NDIM/2.
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SIGMA=R0/3
WRITE(6,104)SIGMA

104 FORMAT(/,” THE CORE RADIUS WAS CHOSEN AS: " F8.4,/)

C

SIGMA2=SIGMA**2

C DEFINE CREATION POINTS.

7

C
C
Cc

DO6 L=1,NBDIES
DOT K=1,NWALL(L)
2Z=WALL(14+MOD(K+NWALL(L)-2,NWALL{L)),L)
> -WALL{1+MOD(K,NWALL(L)),L)
ZCR(K,L)=WALL(K,L)+CMPLX(0.,R0/CABS(ZZ))*22
CHECK THAT WALL AND CREATION POINTS ARE NOT
CROSSED DUE TO TOO SHARP A CONCAVE KINK OR AN
ERROR IN DEFINING THE BODY.
XMAX(L)=REAL(ZCR(1,L))
DO6 K=1,NWALL(L)
XMAX(L)=AMAXI(XMAX(L) REAL(ZCR(K,L)))
KP=1+4+MOD(K,NWALL(L))
IF(REAL((ZCR(KP,L)-ZCR(K,L))*
> CONJG(WALL(KP,L)-WALL(K,L))).GT.0)GO TO 6
WRITE (6,102)L,K

102 FORMAT(

sNoNoNeoNoNoNoRoRoNe No Mol

>" ON BODY NUMBER " ,I3," YOU HAVE TOO SHARP A",
>" KINK NEAR POINT " l14)

STOP

CONTINUE

COMPUTE MATRIX.
EXCEPT FOR THE LAST ONE ON EACH BODY, EACH LINE
WILL REPRESENT: PS{WALL(NWALL))-PSI{WALL(I))
WHERE PSI CORRESPONDS TO THE NEW VORTICES TO BE
CREATED AND WILL HAVE TO CANCEL THE PSI DUE TO
THE FREESTREAM 4 OLD VORTICES.
THE LAST LINE IS ALL 0, EXCEPT ON COLUMNS
BELONGING TO THE SAME BOLY, THEN IT IS 1.
IT WILL CONTROL THE TOTAL STRENGTH OF ALL THE NEW
VORTICES EMANATING FROM THAT BODY, AS WELL AS
PREVENTING THE MATRIX A FROM BEING SINGULAR.
PI=4*ATAN(1)
10=<0
DO2 Li=1,NBDIES
JO=0
DO4 L2==1,NBDIES
KRON=0
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IF(L1.EQ.L2)KRON=1
DO3 J=1,NWALL(L2)
A(I04+NWALL(L1),J04J)=KRON
DO3 I=1,NWALL(L1)-1
3 A(I041,J0+J)=-.25/PI*ALOG(
>  (SIGMA2+CABS(WALL(I+1,L1)-ZCR(J,L2))**2)
>  /(SIGMA2+CABS(WALL(I,L1}-ZCR(J,L2))**2))
4 Jo=JO+NWALL(L2)
2 10=I04+NWALL(L1)
C

C GAUSS ELIMINATION.
C SGECO IS THE LINPACK RCUTINE.
C XIS USED AS A DUMMY HERE.
CALL SGECO(A,215,NDIM,IPVT,COND X)
COND=1/COND
WRITE (6,103)COND
103 FORMAT(/,” CONDITION NUMBER " E8.2)
C
C MISCELLANEOUS; BISECTION DEVICE.
DO1 L==1,NBDIES
C FIND A HUB FOR THE RAYS OF THE BISECTION DEVICE.
HUB(L)=0
NPTS=0
FIRST==
DO 20 I=1,NWALL(L)
P=14+MOD(],NWALL(L))
IM=1+MOD(I+NWALL(L)-2, NWALL(L))
IF{1.4+AIMAG((ZCR(IP,L)-ZCR(I,L))*
> CONIG(ZCR(IM,L)-ZCR(I,L))).EQ.1.JGO TO 20
NEXT(I)=FIRST

FIRST=I
20 CONTINUE
C
I=FIRST

a1 IF(LEQ.0)GO TO 22
[P=1+MOD(I,NWALLIL})
K=NEXT(I)
24 IF(K.EQ.0)GO TO 23
KP=1+MOD(K,NWALL(L))
=AIMAG( {ZCR(IP,L)-ZCR{I,L)) *
>  CONJG (ZCR(KP,L)-ZCR(K,L)) )
IF(AA EQ.0)GO TO 10
INTSEC=ZCR{I,L)+AIMAG((ZCR(K L)-ZCR(I,L))*
>  CONJG(ZCR(KP,L)-ZCR(K,L)))*

[T e,
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>  (ZCR(IPL)}-ZCR(I,L))/AA
DO 11 J=1,NWALL(L)

11 IF(1.4-AIMAG ( (INTSEC-ZCR(J,L)) *
>  CONIJG(ZCR(1-+MOD(J,NWALL(L)),L}-ZCR{J, L))
> ).LT.1)GOTO 10

HUB(L)=HUB(L)+INTSEC
NPTS=NPTS+1

10 K=NEXT|(K)
GO TO 24
23 =NEXT(J)
GO TO 21

22  IF(NPTS.GE.1)GO TO 12
WRITE(8,100)L
100 FORMAT(
>" THERE IS A PROBLEM WITH BODY NUMBER " I4,/,
>" ITS SHAPE IS PROBABLY TOO COMPLEX AND THE "
> PROGRAM WAS UNABLE TO DEFINE A HUB. ",
>"OR ELSE YOUR POINTS ARE NOT COUNTERCLOCKWISE")
STOP
12 HUB(L)=HUB(L)/NPTS
WRITE (6,101)L,REAL(HUB(L)),AIMAG(HUB(L))
100 FORMAT(/,” THE HUB FOR BODY " 14, IS AT: " 2F8.3)
C NOW COMPUTE THE POLAR ANGLE OF ALL THE POINTS.
20(L)=CONJG(ZCR(NWALL(L),L)-HUB(L))
DOS8 1==1,NWALL(L)
8 THETA(I,L)=
> AIMAG(CLOG(-Z0(L)*{ZCR(I,L)-HUB(L}))))
C
C NOW COMPUTE THE INCREMENTS FOR THE BISECTION.
INC(1,L)=NWALL(L)/2
K=NWALL(L)-INC(1,L}
DOS I=2,15
IF(K.EQ.1)GO TO 1
INC{11,L)=MAX0(1,INC(II-1,L.)/2)

5 K=K-INC(II,L)
1 NINC(L)=I-1
C

RETURN

END

SUBROUTINE SOLID(NBDIES,NWALL, WALL,CHARD)
C
C ALLOWS THE USER TO INPUT THE SHAPE OF THE SOLID.
C IT CAN BE | BODY (NBDIES=1), OR SEVERAL. r
C NWALL(L) NUMBER OF POINTS ON SOLID L (L=1,NBDIES).

1) i
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WALL(I(,L) COMPLEX POSITIONS OF THESE POINTS
(K=1,NWALL(L)).

THEY MUST RUN COUNTER-CLOCKWISE!

CHARD IS THE CHARACTERISTIC DIMENSION

COMPLEX WALL(215,1)
INTEGER NW*LL(2)

NBDIES="1
FIRST BODY.

NWALL(1)=200

DO 1 K=1,100

=-14.02'K

WALL(K,1)=CMPLX(.2*(1-Y*Y),Y)

WALL (K+100,1)=CMPLX(0.-Y)

CHARD=2

WRITE(8,100)

100  FORMAT(/,” THE SOLID IS A CAMBERED FLAT PLATE")

oNoNo!]

Ko

an=

RETURN
END

SUBROUTINE INIT (ISTART,NSTART, T,V0,ABSUIN,
> CHARD,DO0)

INITIALIZE TIME-DEPENDENT VARIABLES.

COMPLEX Z,V,VM
COMMON/VORTEX/NVORT,Z(2000),V(2000),VM(2600)
> ,GAMMA(2000)
IF(ISTART.EQ.0)GO TO 8
CASE OF A START FROM POTENTIAL FLOW.
START AT STEP 1 WITH T=0 AND NO VORTICES.
NSTART =1
T=0
NVORT=0
GIVE PHONY VALUES TO THE VORTEX POSITIONS AND
CIRCULATIONS.
DOT I=1,2000
2(1)=10.
VM(I)=0.
GAMMA (I)=0.
A TENTATIVE VALUE FOR V0, WHICH WILL BE
ADJUSTED LATER.
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V0=1.E-5*ABSUIN*(CHARD/D0)**3
RETUKN

CASE OF A START FROM A PREViOUS RUN.
READ (9) NSTART,T,NVORT,Z,GAMMA,VM,V0

RETURN
END
SUBRCUTINE MERGE(DO,VO,NDES,N)

THIS ROUTINE MERGES PAIRS OF VORTICES INTO ONE
WHENEVFR THE PENALTY FOR DOING SO

IS UNDER A TOLERANCE (V0).

ALSO ADJUSTS V0 TO ACHIEVE DESIRED

NUMBER OF VORTICES.

REAL B(2000), MERTST|(2000)

COMPLEX HUB,Z,Z1,V,ZCR,Z0,WALL ,VM
COMMON/VORTEX, NVORT,Z(2000),V(2000),V\:(2000)
> ,GAMMA (2000)
COMMON/SOLID/NBDJES,NWALL (2), WALL(215,1),
> ZCR(215,1), HUB(2),20(2), THETA(215,1),NINC(2)

> INC(15,2) XMAX(2)

RETURN IF THERE ARE NO VORTICES YET.
IF(NVORT.LE.S)RETURN

FEEDBACK NUMBER OF VORTICES TO THE TOLERANCE.
VO=VO*EXP(AMAXI(-.1,.00.*(NVORT-NDES)))
SQV0=SQRT(V0)

PREPARE VORTICES FOR MFRGING;
FIND THEIR DISTANCE TO THE WALL.
DO 7 I=1,NVORT
D=1E+30
DO1 L=1,NBDIES
FIND THE PROJECTION ON EACH WALL BY BISECTION
OF THE POLAR ANGLE.
TTA=AIMAG(CLOG(-Z0(1.)*(Z(1)-HUB(L))))
K=NWALL(L)
DOS I=1,NINC(L)
IF(T1A.LT.THETA(K-INC{ILL),L))
>  K=K-INC(IL)
KM=1+MOD(K+NWALL(L}-2,NWALL(L))
D IS THE DISTANCE TO THE WALL. B(l) IS STORED
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TO REDUCE THE WORK IN THE INNER LOOP
(LABEL 4, SEE FURTHER DOWN) TO A MINIMUM.
D=AMIN1(D AIMAG(CONIJG(2(I-ZCR(K,L))*
> (ZCR(K,L)-ZCR(KM,L)))/CABS(ZCR(K,L)-ZCR<M,L)))
B(I)=ABS(GAMMA(I))* (ABS(D+DO0))**(-1.5)/SQV0
CONTINUE

TAKE THE VORTICES ONE BY ONE, STARTING WITH
THE LAST ONE.

NVORT0=NVORT

DO 3 I=NVORI{,2,-1

TEST ALL THE OTHER VORTICES AGAINST IT.
DO 4 J=1]-1
MERTST(J)=(REAL(Z(J)-2(1))**2+AIMAG(Z(J)- Z(1))**2)*
>  B(J)*B(I)-ABS(GAMMA(J)+GAMMA(1))

IS THE MERGING TOLERANCE SATISFIED?

(ISMIN IS A CRAY FUNCTION USED HERE TO FIND THE

MINIMUM OF "MERTST”

FROM 1 TO IM WITH INCREMENT 1,
J=ISMIN(I-1, MERTST, 1)

IF NOT SO GO TO NEXT INDEX L
IF(MERTST(J).GT.0.)GO TO 3

IF SO, PROCEED WITH THE MERGING:

PUT THE NEW VORTEX IN J'S PLACE.
Z(J)= (Z(1)*GAMMA(I)+ Z(J)* GAMMA(J))/
> (GAMMA(I)+GAMMA(J))
VM{J)=(VM(I)* GAMMA(I)+VM{J)*GAMMA(J))/
> (GAMMA(I)+GAMMA(J))
GAMMA(J) =GAMMA(I)+ GAMMA(J)
B(J)=B(I)*ABS(GAMMA(J)/GAMMA(I))

PUT LAST VORTEX (INDEX: NVORT) IN Ith PLACE.
2()=Z(NVORT)
VM(I)=VM(NVORT)
GAMMA(I)=GAMMA(NVORT)
B(I)=B(NVORT)
NVORT=NVORT-1

TAKE NEXT VORTEX ON THE LIST.
CONTINUE

END
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SUBROUTINE BCBODY(FORCE,MOM,GAMMAG,N, T, UINF,
> CHARD,NOLD,CP,DELT,SIGMA2)

COMPLEX FORCE(2),UINF

REAL MOM(2),DPDS(215,1),CP(215,1)

THE BODY ABSORBS VORTICES AND EMITS NEW VORTICES
TO ACCOUNT FOR IT, PLUS SOME NEW VORTICITY WHIChH
WILL ALLOW THE VELOCITY FIELD

TO SATISFY THE BOUNDARY CONDITION U=V=0.

DETECT AND ABSORB VORTICES THAT CRASHED INTO WALL.
START COMPUTING PRESSURE AND FORCE.
CALL ABSORB(DPDS,FORCE ,MOM,GAMMAQ,N)

EMIT NEW VORTICES TO SATISFY BOUNDARY CONDITION,
AND FINISH COMPUTING PRESSURE, FORCE, ETC.

CALL EMIT(N, T, UINF,CHARD,NOLD ,FORCE,MOM,DPDS,

> CP,DELT,SIGMA2)

RETURN

END

SUBROUTINE ABSORB(DPDS FORCE,MOM,GAMMAO,N)
REAL DPDS(215,1), MOM(2)

COMPLEX FORCE(2),Z,V,VM,WALL,ZCR,HUB,Z0
COMMON/VORTEX/NVORT,Z(2000),V(2000),VM(2000)
> ,GAMMA(2000)
COMMON/SOLID/NBDIES,NWALL(2), WALL(215,1),
>ZCR(215,1),HUB(2),20(2), THETA(215,1),NINC(2)

> INC(15,2) XMAX(2)
COMMON/SYSTEM/NDIM,A(215,215) X{(215),IPVT(215)

KILL THE VORTICES THAT ARE TOQ CLOSE TO A WAILL.
(LOST VORTICITY WILL BE REINTRODUCED IMMEDIATELY'.)

TAKE THE SEPARATE BODIES ONE BY ONE.
10==0
DO9 L=1,NBDIES
GET READY TO COMPUTE THE FORCE, MOMENT, AND WL
PRESSURE ON BODY "L".
FORCE(L)=0
MOM(L)=0
DO 3 K=1 NWALL(L)
DPDS(K,L)=0
10=10+NWALL(L)
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X{(ic) IN THE SECOND MEMBER WILL BE THE CIRCULATION
DEFECT TO BE FILLED UP BY THE NEW VORTICES
EMANATING FROM THIS BODY.

X(10)=0
IF THIS IS THE FIRST STEP, INTRODUCE THE DESIRED
CIRCULATION AROUND THE FIESST BODY.

IF(N.EQ.1.AND.L . EQ.1)X(I0)=GAMMAO

LOOK AT THE VORTICES ONE BY ONE.
I=1
IF(I.GT.NVORT)GO TO 9
IF(REAL{Z(I)). GT XMAX(L))GO TO 5
OVER WHICH WALL SEGMENT IS THE VORTEX?
FIND IT BY BISECTION OF THE POLAR ANGLE.
TTA=AIMAG(CLOG(-Z0(L)*{Z(I)-HUB(L))))
K=NWALL(L)
DO 7 O=1,NINC(L)
IF(TTA.LT.THETA(K-INC(I,L),L))
> K=K-INC(II,L)
MAKE SURE OF WHERE THE PROJECTION OF THE VORTEX
IS ON THE WALL.
=14+MOD(K-24+NWALL(L),NWALL(L))
IF(REAL((Z(1)-ZCR(KM,L))*CONJG(ZCR(K,L)-
> ZCR(14-MOD(K+NWALL(L)-3,NWALL(L)),L)}).GE " !:-:0 TO 1
K=KM
GO TO 2
KP=14+MOD(K,NWALL(L))
IF(REAL((Z(I)-ZCR(K,L))*CONJG(ZCR(KP : ;
> -ZCR(KM,L))).LE.0.)GO TO 4
KM=K
K=KP
GO TO1

IS THE VORTEX INSIDE THE SuLID?
KM=14+MOD(K-24+NV" L (L),NWALL(L))
D=AIMAG(CONJG(Z" «CR(K,L))*(ZCR(K,L)-ZCR(KM,L)))

IF IT IS NOT, LEA\™ T ALONE.
IF(D.GT.0)G' D5

IF IT IS, KILL 7 (#*IRST RECORD THE LOSS OF

CIRCULAT! ::v, AND LINEAR AND ANGULAR MOMENTUM)
X(10* - »,10)+GAMMA(I)
FO'  £(L)=FORCE(L)-GAMMA(I)*Z(I)
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MOM(L)=MOM(L.)-GAMMA(I)*(REAL(Z(I)-HUB(L))
> **24 AIMAG(Z(I)-HUB(L))**2)
C ALSO RECORD VORTICITY ABSOKPTION FOR THE PRESSURE
C GRADIENT. LINEAR DEPOSITION.
D=REAL((Z(I}-ZCR(KM,L))*
> CONJG(ZCR(K,L)-ZCR(KM,L}))
DM=REAL((ZCR(K,L)-Z(1))*
> CONJG(ZCR(K,L)-ZCR(KM,L)))
DPDS(K,L)=DPDS(K,L)+GAMMA(I)*D/(D+DM)
DPDS(KM,L) =DPDS(KM,L)+ GAMMA(I)*DM/(D+DM)
c
C NOW PUT LAST VORTEX IN THE Ith PLACE IN THE ARRAY.
Z(1)=Z(NVORT)
GAMMA (I)=GAMMA (NVORT)
VM(I)=VM(NVORT)
NVORT=NVCRT-1
GO TO 6

C GO TO NEXT VORTEX.
5 I=[+1

GOTOG6
) CONTINUE

RETURN
END

SUBROUTINE EMIT(N,T, UINF,CHARD,NOLD,FORCE,
> MOM,DPDS,CP,DELT ,SIGMA2)

COMPLEX Z.V,VM,WALL,ZCR,HUB,Z0,FORCE(2),UINF
REAL MOM(2),DPDS{215,1),CP(215.1) PSI(215,1)

> PS(2000)
CCMMON/VORTEX/NVORT,Z(2000),V(2000),VM(2000)
> ,GAMMA(2000)
COMMON/SOLID/NBDIES,NWALL(2), WALL(215,1),

> ZCR(215,1), HUB(2),Z0(2), THETA(215,1),NINC(2)

> JINC(15,2) XMAX(2)
COMMON/SYSTEM/NDIM,A(215,215) X(215),IPVT(215)

PI=4*ATAN(1))

10=0

DO5 L. 1, NBDIES
C STREAM FUNCTION AT THE WALL; CONTRIBUTION OF...

DO 16 K==1,NWALL(L)
C ..THE FREESTREAM...
C ...AND OF THE OLD VORTICES.
DO4 I=1,NVORT
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4 PS(I)=GAMMA()*

>  ALOG(REAL(Z(I)-WALL(K,L))**2+

>  AIMAG(Z(I)-WALL(K,L))**2--SIGMA2)
16  PSI(K,L)=AIMAG(WALL(K,L)* CONJG(UINF))

> -SSUM(NVORT,PS,1)* .25 /Pl
C
C THE NEW VORTICES MUST CANCEL THE STREAM FUNCTION
C AT THE WALL.
C THIS GIVES A LINEAR SYSTEM FOR THEIR CIRCULATIONS.
C COMPUTE ITS SECOND MEMBER.

DO18 K=1,NWALL(L)-1
8 X(104+K)=PSI(K,L)-PSI(K+1,L)

5  10=I0+NWALL(L)

o
C SOLVE SYSTEM.
C SGESL IS THE LINPACK ROUTINE.

C XIS THE RIGHT HAND SIDE, AND

C THE SOLUTION IS WRITTEN OVER IT.

CALL SGESL(A,215,NBODY,IPVT X,0)

c

o

C

c

CREATE NEW VORTICES.
REMEMBER WHICH VORTICES ARE 0O1L.D ENOUGH TO USE
ADAMS-BASHFORTH.
NOLD=NVORT
10=0
DO17 L=1,NBDIES
DO 3 K=1,NWALL(L)
C PUT THE NEW VORTEX AT THE END OF THE ARRAY.
NVORT=NVORT+1
Z(NVORT)=ZCR(K,L)
GAMMA(NVORT)=X(104K)

C RECORD THE GAIN OF LINEAR AND ANGULAR MOMENTUM.
FORCE(L)=FORCE(L)+GAMMA(NVORT)*Z(NVORT)
MOM(L)=MOM(L)+GAMMA(NVORT)*(REAL(Z(NVORT)

>  -HUB(L))**2+AIMAG(Z(NVORT)-HUB(L))**2)

ALSO RECORD VORTICITY CREATION FOR THE PRESSURE

GRADIENT.

DPDS(K,L)=DPDS(K,L)-X(10+K)

FILTER PRESSURE GRADIENT AND INTEGRATE IT TO GET
PRESSURE.

CP(1,1.)=0

DO14 K=2 NWALL(L)

oNoNo R NeoNe

108

e Y TS S

A e e e A



0
3
<

)
a0

[

F PG

14 CP(K,L)=CP(K-1,L)+(3*(DPDS(K,L)+DPDS(ix-1,L))
>  +DPDS(14+MOD(K+NWALL(L)-3,NWALL(L)),L)}+
> DPDS(1+MOD(K,NWALL(L)),L))/
> (4*DELT*CABS(UINF)**2)

C ° )RMALIZE PRESSURE.

CPMAX=CP(ISMAX(NWALL(L),CP(1,L),1),L)
D022 K=1NWALL(L)

22 CP(K,L)=CP(K,L)-CPMAX

c

C FINISH COMPUTING FORCE AND MOMENT AND

C NON-DIMENSIONALIZE THEM.

FORCE(L)=FORCE(L)*
> CMPLX(0.,2./(DELT*CHARD*CABS(UINF)**2))
MOM(L)=MOM(L)*2/(DELT*(CHARD*CABS(UINF))**2)

17 10=I0+NW

c

C PRINT INSTANTANEOUS DATA.

T=T+DELT

IF(MOD(N,5).EQ.0)

> WRITE (6,105)N,T,NVORT ,REAL(FORCE(1)),
> AIMAG(FORCE(1)),MOM(1)

105 FORMAT(/,6H STEP J4,6H TIME ,F8.4,7H NVORT ,
>14,3H CD,F7.4,3H CL,
>F17.4,4H MOM F7.4)
IF(MOD(N,5).EQ.0.AND.NBDIES.GE.2)
> WRITE(8,106)REAL(FORCE(2)),AIMAG(FORCE(2))
> MOM(2)

106 FORMAT(" CD, CL, AND MOM ON SECOND BODY:"
>,2F10.4,F11.4)

RETURN
END
SUBROUTINE MOVE(UINF,SIGMAZ,NOLD,DELT)

MOTION OF THE VORTICES.
OLD VORTICES USE ADAMS-BASHFORTH-2,
NEW ONES USE EULER EXPLICIT.

aaooaa

COMPLEX Z,V,VM,UINF
COMMON/VORTEX/NVORT,Z(2000),V(2000),VM(2000)
> ,GAMMA(2000)

COMPUTE VELOCITIES OF THE VORTICES.
CALL VELOCT(UINF,SIGMAZ2)

MOVE VORTICES.
ADAMS-BASHFORTH-2 FOR THE OLD VORTICES.

anaa oo
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DO13 I=1,NOLD
Z(I)=Z(1)+DELT*(1.5*V(1)- 5*VM(L})
VM(D)=V(1)
EULER EXPLICIT FOR THE NEW VORTICES.
DO 2 I=NOLD+1,NVORT
Z(I)=Z(I)+DELT*V(])
VM()=V(1)

RETURN
END
SUBROUTINE VELOCT(UINF,RC2)

BIOT SAVART INTERACTION OF VORTICES, POSITIONS Z(I),
CIRCULATION GAMMA(I). VELOCITY AT INFINITY=UINF.
P IS THE CHARACTERISTIC RADIUS IN THE CUT-OFF:
U(R) IS= (GAMMA/2PI)*R/(R**2+RC**2)

REAL VX(2000),VY(2000)

COMPLEX Z,V,DELZ,VM,UINF
COMMON/VORTEX,/NVORT,Z(2000),V(2000),VM(2000)
> ,GAMMA (2000)

FREESTREAM VELOCITY.
PI=4*ATAN(1.)
DO 3 1=1,NVORT
V(I)=CMPLX(0.,-2*PI)* UINF

COMPUTE INTERACTIONS.
LOOP ON FIRST VORTEX.
DO1 I=2, NVORT

LOOP ON SECOND VORTEX.
DO4 1=1]-1
DELZ=2(1)-Z(J)
DELZ=DELZ/(RC2+REAL(DELZ)**2+AIMAG(DELZ)**2)
VX(J)=REAL(DELZ)*GAMMA(J)
VY(J)=AIMAG{DELZ)*GAMMA(J)
V(J)=V(J)-GAMMA(I)*DELZ

(THE CRAY FUNCTION SSUM IS USED TO SUM UP A VECTOR

LIKE VX, FROM 1 TO I-1 WITH INCREMENT 1.)

(NOTE THAT THE CSUM FUNCTION WOULD HAVE BEEN THE

LOGICAL CHOICE HERE; BUT IT SEEMS TO HAVE A BUG...)
V(I)=V(1)4+CMPLX(SSUM(I-1,VX,1),SSUM(I-1,VY, 1))

MULTIPLY BY I/2PI.
DO2 I=1,NVORT
V{I)=V{I}*CMPLX(0.,.5/PI)

RETURN
END 108
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